Kolkata
+919029362692

'paramount typical applications'

Items tagged with 'paramount typical applications'

product image
Stainless Steel Flanges

DIN 2634 stainless steel flanges PN 25 are precision-engineered weld neck flanges designed and manufactured in accordance with the DIN 2634 standard. These flanges are suitable for high-pressure pipeline systems operating up to 25 bar (362 psi), providing robust and secure connections for a variety of critical industrial applications. Constructed from high-quality stainless steel grades such as 304, 316, and 321, these flanges offer excellent mechanical properties, enhanced corrosion resistance, and dependable performance in aggressive service conditions. Ladhani Metal Corporation is a globally recognized manufacturer and supplier of stainless steel flanges, known for delivering high-precision products that meet stringent international quality and dimensional standards. Each flange undergoes rigorous testing and quality checks to ensure optimal performance, safety, and longevity under high-pressure conditions. Pressure Rating: • PN 25 (25 bar / 362 psi): Engineered for high-pressure environments requiring reinforced flange connections with reliable resistance to corrosion and mechanical stress. Flange Type: • Weld Neck Flanges Incorporating a long tapered hub, weld neck flanges help maintain pipe alignment, reduce stress concentration at the weld joint, and enable smooth fluid flow with minimal turbulence. • Flat Face (FF) Flanges Ideal for systems utilizing soft gaskets or cast components, flat face flanges promote consistent gasket compression and sealing integrity. Stainless Steel Grades and Typical Composition: Stainless Steel 304 • Chromium (Cr): 18.0 – 20.0% • Nickel (Ni): 8.0 – 10.5% • Carbon (C): ≤ 0.08% (304), ≤ 0.03% (304L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Suitable for general-purpose piping systems in environments with moderate corrosion exposure, including potable water and light-duty process lines. Stainless Steel 316 • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Carbon (C): ≤ 0.08% (316), ≤ 0.03% (316L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Ideal for systems exposed to chlorides, cleaning agents, or other corrosive substances such as in chemical processing, pharmaceuticals, and marine environments. Stainless Steel 321 • Chromium (Cr): 17.0 – 19.0% • Nickel (Ni): 9.0 – 12.0% • Titanium (Ti): ≥ 5 × C (typically 0.20 – 0.70%) • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Frequently used in high-temperature services such as thermal processing equipment, exhaust systems, and heat exchangers due to its stability against intergranular corrosion. Applications of DIN 2634 Stainless Steel Flanges PN 25: • Chemical Processing Units Handles higher operating pressures in systems transporting acids, alkalis, and solvents. • Marine and Offshore Installations Resistant to pressure fluctuations and saltwater corrosion in offshore piping networks. • Pharmaceutical and Biotech Plants Used in clean process environments where both pressure integrity and corrosion resistance are critical. • Industrial Steam and Thermal Systems Suitable for steam distribution and thermal expansion pipelines operating under high pressure. • Power Generation Facilities Applied in turbine piping, heat recovery systems, and pressurized cooling water circuits. Key Features: • Manufactured to DIN 2634 dimensional and pressure specifications • PN 25 pressure rating supports high-pressure operation • Weld neck design ensures leak-tight, stress-resistant connections • Available in stainless steel grades 304, 316, 321 and their low-carbon variants • Superior resistance to high-temperature corrosion and chemical attack • Long-term mechanical strength and fatigue resistance • Custom sizes, finishes, and pressure ratings available upon request Conclusion: DIN 2634 stainless steel flanges PN 25 from Ladhani Metal Corporation are engineered for high-performance use in high-pressure industrial environments where safety, corrosion resistance, and durability are paramount. These flanges are ideal for chemical, marine, thermal, and high-purity applications requiring strong, leak-resistant, and corrosion-resistant connections. For technical support, customized solutions, or pricing details, contact Ladhani Metal Corporation today.

Send Message
product image
Stainless Steel Flanges

DIN 2628 stainless steel flanges PN 250 are precision-engineered weld neck flanges manufactured according to the DIN 2628 standard. Designed for high-pressure applications up to 250 bar (3625 psi), these flanges are essential for maintaining strength and leak-free connections in critical piping systems. Made from premium stainless steel grades such as 304, 316, and 321, these flanges offer exceptional mechanical stability, corrosion resistance, and durability under severe industrial operating conditions. Ladhani Metal Corporation is a leading manufacturer and supplier of stainless steel flanges. Our DIN 2628 PN 250 weld neck flanges are trusted in demanding sectors including oil and gas, chemical plants, marine engineering, energy infrastructure, and high-pressure process systems for their consistent quality and dependable performance. Pressure Rating: • PN 250 (250 bar / 3625 psi): Engineered for high-pressure piping systems requiring superior joint integrity and long-term sealing reliability. Flange Type: • Weld Neck Flanges Designed with a long tapered hub for high-stress applications. These flanges ensure smooth flow transition and minimize turbulence and erosion in the pipe system. • Flat Face (FF) Flanges Flat face design ensures uniform gasket compression and is suitable for systems using cast components or where flange distortion must be avoided. Stainless Steel Grades and Full Composition: Stainless Steel 304 / 304L (UNS S30400 / S30403) • Chromium (Cr): 18.0 – 20.0% • Nickel (Ni): 8.0 – 10.5% • Carbon (C): ≤ 0.08% (304), ≤ 0.03% (304L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Suitable for general-purpose corrosion resistance. Commonly used in food processing, water treatment, and chemical piping. Stainless Steel 316 / 316L (UNS S31600 / S31603) • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Carbon (C): ≤ 0.08% (316), ≤ 0.03% (316L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Excellent resistance to chloride environments and acidic media. Widely used in marine, pharmaceutical, and chemical process plants. Stainless Steel 321 (UNS S32100) • Chromium (Cr): 17.0 – 19.0% • Nickel (Ni): 9.0 – 12.0% • Titanium (Ti): ≥ 5 × C (typically 0.20 – 0.70%) • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Titanium-stabilized alloy suited for high-temperature service and excellent resistance to intergranular corrosion. Common in thermal processing and aerospace exhaust systems. Applications of DIN 2628 Stainless Steel Flanges PN 250: • Oil and Gas Sector Used in pressure-critical pipelines, wellheads, and refining equipment. • Chemical and Petrochemical Industry Ideal for corrosive chemical service lines and pressurized chemical tanks. • Marine and Offshore Applications Used in seawater systems and high-pressure marine piping. • Energy and Power Generation Applied in steam, boiler, and high-pressure turbine piping systems. Key Features: • Compliant with DIN 2628 standards • PN 250 pressure class for high-pressure service • Weld neck design for optimal stress distribution • Available in stainless steel grades 304, 304L, 316, 316L, and 321 • Flat face option for uniform sealing and flange safety • Corrosion-resistant and robust under mechanical loads • Applicable in aggressive chemical, marine, and high-temperature environments • Custom sizes, materials, and finishes available upon request Conclusion: DIN 2628 Stainless Steel Flanges PN 250 from Ladhani Metal Corporation are engineered for high-pressure operations where integrity, reliability, and corrosion resistance are paramount. Available in a range of stainless steel materials including 304, 316, and 321, these weld neck flanges provide superior sealing and strength across demanding industrial sectors. Contact Ladhani Metal Corporation for custom solutions, technical assistance, or a detailed quotation.

Send Message
product image
Super Duplex Flanges

DIN 2566 super duplex flanges PN 16 are engineered for superior mechanical strength and excellent corrosion resistance in medium-pressure threaded piping systems. These flanges are manufactured in accordance with DIN 2566 standards and are designed for use in harsh environments where conventional stainless steel flanges may not perform reliably. With a threaded, non-welded design, they are ideal for systems that require ease of installation and frequent maintenance access. Ladhani Metal Corporation is a reputed manufacturer and exporter of super duplex stainless steel flanges, offering high-performance products with excellent dimensional accuracy, strength, and resistance to pitting, crevice corrosion, and stress corrosion cracking. These flanges are well-suited for demanding industries such as oil and gas, desalination, chemical processing, and offshore engineering. Flange Types: • Threaded (Screwed) Flanges: Quick and easy to install without welding; ideal for systems that require regular disassembly or adjustments. • Raised Face (RF) Flanges: Enhances gasket compression by focusing pressure on a smaller surface area for improved sealing. • Flat Face (FF) Flanges: Used in systems with flat-sealing surfaces, especially in low-pressure or brittle material connections. • Forged Threaded Flanges: Manufactured through precision forging to achieve superior strength, tight tolerances, and impact resistance. • Custom-Machined Flanges: Available in custom sizes, pressure ratings, and face types as per project specifications. Available Super Duplex Grade and Composition: 1. Super Duplex 2507 (UNS S32750) • Chromium (Cr): 24.0 – 26.0% • Nickel (Ni): 6.0 – 8.0% • Molybdenum (Mo): 3.0 – 5.0% • Nitrogen (N): 0.24 – 0.32% • Carbon (C): ≤ 0.030% • Manganese (Mn): ≤ 1.2% • Silicon (Si): ≤ 0.80% Applications: Super Duplex 2507 is used in highly corrosive environments where strength and corrosion resistance are paramount. Typical applications include subsea and offshore structures, chemical process systems, high-salinity water handling, pressure vessels, and marine components. Applications of DIN 2566 Super Duplex Flanges: • Offshore Oil & Gas: Withstands harsh subsea conditions and sour service • Desalination and Water Treatment: Excellent in brine and chlorinated environments • Chemical and Petrochemical Industries: Handles aggressive process chemicals with ease • Marine and Shipbuilding: High durability in saltwater and humid environments • Structural and High-Pressure Piping: Suitable for critical load-bearing and high-stress systems Key Features: • Manufactured to DIN 2566 standard with PN 16 pressure rating • Exceptional corrosion resistance, especially against chlorides and sulfides • Very high tensile and yield strength • Threaded connection for fast and weld-free installation • Outstanding resistance to stress corrosion cracking and erosion • Supplied with material test certificates, third-party inspection (if required), and traceability documentation Conclusion: DIN 2566 super duplex flanges PN 16 from Ladhani Metal Corporation provide unmatched performance in extreme environments where both high strength and superior corrosion resistance are essential. Engineered for long service life with minimal maintenance, these flanges are the preferred solution for the most demanding industrial and marine applications. For inquiries, technical specifications, or project-based customization, contact Ladhani Metal Corporation today.

Send Message
product image
Duplex Flanges

Ladhani Metal Corporation is a leading manufacturer and exporter of DIN 2565 duplex flanges, designed for reliable, high-strength connections in low-pressure piping systems. Manufactured in accordance with DIN 2565 standards and typically offered with a PN 6 pressure rating, these flanges are ideal for threaded pipe joints where welding is not required. Duplex flanges are crafted from duplex stainless steel, known for its dual-phase microstructure that combines the strength of ferritic steel with the corrosion resistance of austenitic steel. This makes them an excellent choice for applications where both mechanical performance and resistance to harsh environments are critical. Flange Types: • Threaded (Screwed) Flanges: Designed for easy installation and disassembly without welding, suitable for systems requiring frequent maintenance. • Raised Face (RF) Flanges: Enhances gasket sealing capabilities, ensuring leak-proof performance in pressurized systems. • Flat Face (FF) Flanges: Commonly used in low-pressure piping systems, especially with non-metallic gaskets. • Forged Threaded Flanges: Manufactured through forging for improved toughness, impact resistance, and pressure-handling capabilities. Duplex Steel Grades and Composition: Duplex 2205 (UNS S31803 / S32205) o Chromium (Cr): 22.0 – 23.0% o Nickel (Ni): 4.5 – 6.5% o Molybdenum (Mo): 3.0 – 3.5% o Nitrogen (N): 0.14 – 0.20% o Iron (Fe): Balance Applications: Ideal for chemical processing, marine applications, and high-chloride environments due to excellent pitting and crevice corrosion resistance. Applications of DIN 2565 Duplex Flanges: • Chemical and Petrochemical Industries: Withstand acidic and chloride-rich environments. • Marine and Offshore Structures: Resistant to seawater corrosion and stress corrosion cracking. • Oil & Gas Industry: Used in pressure vessels, heat exchangers, and subsea pipelines. • Pulp and Paper Industry: Excellent resistance to sulfide and chloride attack. • Desalination Plants: Long-lasting performance in salt-heavy environments. Key Features: • Compliant with DIN 2565 standard and PN 6 pressure rating • Superior strength and stress resistance compared to standard stainless steels • Excellent resistance to pitting, crevice, and stress corrosion cracking • Available in Duplex 2205 and Super Duplex 2507 grades • Delivered with full traceability and third-party inspection certificates Conclusion: DIN 2565 duplex flanges from Ladhani Metal Corporation are engineered for optimal performance in environments demanding both strength and corrosion resistance. Their robust construction, advanced metallurgy, and precise engineering make them ideal for industries where reliability and safety are paramount. For technical specifications, pricing, or bulk order inquiries, reach out to Ladhani Metal Corporation today.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC05 DIN EN 10130 1.0312 St 15-03 The special deep-drawing grade DC05 is specified in accordance with the DIN EN 10130 standard, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products used in numerous industrial applications, particularly where exceptional formability and excellent surface quality are required. DC05 is a low-carbon steel that is characterized by its excellent cold formability. The chemical composition of DC05 is strictly controlled to ensure that the material has the desired mechanical properties. The carbon content in DC05 is typically a maximum of 0.02 %, while the manganese content is a maximum of 0.25 %. This composition promotes the high formability and weldability of the steel. The mechanical properties of DC05 are characterized by a low yield strength of maximum 150 MPa and a tensile strength between 270 and 350 MPa. An outstanding feature of DC05 is its high elongation at break of at least 38 %, which illustrates its excellent formability. These properties make DC05 ideal for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or sophisticated components in the electrical industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC05. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC05, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC05 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC05 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC05. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC05 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC05 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC05 is a reliable and high-quality material for numerous industrial applications.

Send Message

Still searching for
paramount typical applications?