Kolkata
+919029362692

'machinable iron fe'

Items tagged with 'machinable iron fe'

product image
Inconel Flanges

DIN 2573 Inconel Flanges PN 6 are precision-manufactured low-pressure plate flanges made from high-performance Inconel alloys, specifically engineered for highly corrosive and thermally challenging environments. Compliant with DIN 2573 standards, these flanges are ideally suited for low-pressure applications that demand exceptional resistance to oxidation, acids, and high-temperature stress. Inconel’s unique properties make these flanges suitable for aggressive processing systems in industries such as chemical manufacturing, petrochemicals, marine, power generation, and aerospace. Ladhani Metal Corporation is a recognized manufacturer and global supplier of Inconel alloy flanges, delivering premium-quality components built to international specifications. The DIN 2573 plate flange design ensures straightforward installation while providing excellent sealing reliability, especially in environments where conventional materials may degrade rapidly. Pressure Rating: • PN 6 (6 bar / 87 psi): Designed for low-pressure systems that operate under harsh chemical, thermal, or oxidative conditions, providing long-term durability and consistent performance. Flange Types: • Plate Flanges Flat-ring type flanges used in systems where welding and bolting are required, with gasket sealing for low-pressure flow lines. • Flat Face (FF) Flanges Used with flat gaskets and mating surfaces, especially in brittle or cast systems where full contact and load distribution are critical. • Slip-On Flanges Ease of installation and alignment with the pipe make these ideal for maintenance-friendly or modular low-pressure piping. • Custom-Machined Flanges Precision-machined to customer-defined sizes, Inconel grades, drilling standards, and flange face finishes. Inconel Grades and Composition: 1. Inconel 600 (UNS N06600) Composition: • Nickel (Ni): ≥ 72% • Chromium (Cr): 14.0 – 17.0% • Iron (Fe): 6.0 – 10.0% • Manganese (Mn), Silicon (Si), Carbon (C): Trace amounts Applications: Commonly used in heat exchangers, furnace components, and food processing equipment exposed to high temperatures and oxidizing chemicals. 2. Inconel 625 (UNS N06625) Composition: • Nickel (Ni): ≥ 58.0% • Chromium (Cr): 20.0 – 23.0% • Molybdenum (Mo): 8.0 – 10.0% • Niobium (Nb): 3.15 – 4.15% Applications: Ideal for seawater equipment, chemical processing plants, aerospace exhaust systems, and nuclear reactors due to excellent resistance to pitting, crevice corrosion, and stress corrosion cracking. 3. Inconel 718 (UNS N07718) Composition: • Nickel (Ni): 50.0 – 55.0% • Chromium (Cr): 17.0 – 21.0% • Iron (Fe): Balance • Molybdenum (Mo): 2.8 – 3.3% • Niobium (Nb): 4.75 – 5.5% • Titanium (Ti): 0.65 – 1.15% • Aluminum (Al): 0.2 – 0.8% Applications: Primarily used in aerospace, gas turbines, and cryogenic systems due to its exceptional high-temperature strength, oxidation resistance, and good weldability. It is ideal for use in extreme thermal environments, such as turbine engines and high-pressure systems. Applications of DIN 2573 Inconel Flanges: • Chemical and Acid Processing Plants: Withstand highly corrosive chemicals such as nitric, hydrochloric, and sulfuric acid under thermal cycling. • Power Generation and Heat Exchangers: Resist oxidation and high-temperature fatigue in boiler feed systems, turbine piping, and condensate lines. • Marine and Offshore Installations: Provide excellent resistance to seawater, salt spray, and chloride-induced stress corrosion cracking. • Aerospace and Jet Engine Systems: Used in fuel, exhaust, and cooling systems where heat and corrosion resistance are critical. • Environmental and Waste Treatment Facilities: Endure aggressive chemical waste, thermal gradients, and acidic sludges in scrubbing and exhaust ducting systems. Key Features: • Designed according to DIN 2573 standards • PN 6 rating for low-pressure service with high chemical and thermal loads • Outstanding resistance to acids, chlorides, oxidation, and high temperatures • Available in Inconel 600, 625, 718, and other high-nickel alloys • Low maintenance and long service life in corrosive environments • Machinable for customized face types and bolt hole configurations Conclusion: DIN 2573 Inconel Flanges PN 6 from Ladhani Metal Corporation are engineered for performance in chemically aggressive and thermally intense low-pressure systems. With superior corrosion and heat resistance, these flanges are a critical component in applications where traditional materials fail. For specific alloy recommendations, custom dimensions, or technical support, contact Ladhani Metal Corporation today.

Send Message
product image
Carbon Steel Flanges

Ladhani Metal Corporation is a leading manufacturer and exporter of DIN 2565 carbon steel flanges, designed to provide strong, reliable, and cost-effective connections in low-pressure piping systems. Manufactured in accordance with DIN 2565 standards and available in PN 6 pressure rating, these threaded flanges are ideal for non-welded piping setups, especially in maintenance-friendly or temporary installations. Carbon steel flanges offer a combination of durability, toughness, and affordability. Their versatility makes them a widely preferred choice across industries such as oil and gas, construction, power generation, water treatment, and general engineering applications. Flange Types: • Threaded (Screwed) Flanges: Designed for quick assembly without welding, ideal for applications requiring frequent dismantling or modifications. • Raised Face (RF) Flanges: Helps create a tighter seal by concentrating pressure on the gasket, minimizing leakage. • Flat Face (FF) Flanges: Commonly used with cast iron or non-metallic components in low-pressure pipelines. • Forged Threaded Flanges: Forged for superior strength, impact resistance, and dimensional accuracy. • Custom-Machined Flanges: Tailored to meet specific customer requirements in terms of pressure class, dimensions, or material properties. Available Carbon Steel Grades and Composition: 1. ASTM A105 (Forged Carbon Steel) o Carbon (C): ≤ 0.35% o Manganese (Mn): 0.60 – 1.05% o Phosphorus (P): ≤ 0.035% o Sulfur (S): ≤ 0.040% o Silicon (Si): 0.10 – 0.35% Applications: Widely used in pressure systems at ambient and higher temperatures. Suitable for oil & gas pipelines, valves, and pressure vessels. 2. ASTM A350 LF2 (Low Temperature Carbon Steel) o Designed for low-temperature service with added toughness and impact resistance. Applications: Used in cryogenic and sub-zero temperature systems, such as gas processing and cold storage piping. Applications of DIN 2565 Carbon Steel Flanges: • Oil & Gas Industry: Used in pipelines, valve connections, and flow systems. • Petrochemical and Refineries: Suitable for systems transporting hydrocarbons and chemicals. • Power Plants: Applied in steam, gas, and cooling water systems. • Water and Wastewater Treatment: Durable and cost-effective for fluid transport. • Structural and General Engineering: Commonly used in infrastructure, HVAC, and mechanical systems. Key Features: • Manufactured to DIN 2565 standard with PN 6 pressure rating • High mechanical strength with good ductility and toughness • Economical option for general-purpose piping systems • Easily machinable, weldable (if needed), and suitable for coatings • Delivered with test certificates, inspection reports, and material traceability Conclusion: DIN 2565 carbon steel flanges from Ladhani Metal Corporation offer dependable performance and excellent value across a wide range of applications. Known for their strength, versatility, and cost-effectiveness, these flanges are engineered to meet demanding project requirements. With strict quality control and precision manufacturing, our carbon steel flanges deliver consistent results for industrial and commercial systems. For specifications, custom requests, or bulk orders, get in touch with Ladhani Metal Corporation today.

Send Message
product image
blind flanges

DIN 2527 blind flanges are sealing components used in piping systems to close the ends of pipes, valves, or pressure vessels where no further connection is required. These flanges are designed to prevent the flow of fluids or gases, isolate sections of the piping system for maintenance, or facilitate pressure testing of the system. The DIN 2527 standard ensures these flanges meet specific dimensional and mechanical properties for reliable performance in various industrial applications. material type : Titanium: Titanium flanges, including Grade 2 and Grade 5, are known for their exceptional resistance to corrosion, particularly in aggressive environments like seawater and chemicals. These lightweight and strong materials are commonly used in aerospace, marine, and chemical industries. Stainless Steel (SS): Stainless steel, including grades like 304 and 316, provides excellent corrosion resistance, particularly in harsh environments. It is used in industries like chemical processing and marine applications, where resistance to corrosion and oxidation is essential. Carbon Steel (C.S.): Carbon steel is a popular choice for DIN 2527 blind flanges due to its strength, weldability, and cost-effectiveness. It is ideal for general-purpose applications in systems with moderate temperature and pressure conditions, using grades like St 37 and A105. Mild Steel (MS): Mild steel is a low-carbon steel that offers good formability and strength, making it suitable for less demanding applications. It is commonly used in systems where high pressure or corrosion resistance is not a critical concern. Alloy Steel: Alloy steel flanges, such as A182 F11 and A182 F22, are designed for high-temperature and high-pressure applications. They offer greater strength, thermal expansion resistance, and durability, making them ideal for power generation and petrochemical industries. Inconel: Inconel flanges, including Inconel 600 and 625, are ideal for extreme high-temperature and aggressive environments. These alloys provide superior strength and exceptional resistance to oxidation and corrosion, making them suitable for high-performance applications. SS Duplex Steel: Duplex steel, such as grade 2205, combines the characteristics of both austenitic and ferritic steels, offering high strength and superior resistance to corrosion. It is ideal for use in chemical and marine environments where stress corrosion cracking resistance is crucial. SS Super Duplex Steel: Super duplex steel, such as 2507, provides a combination of high strength and excellent corrosion resistance, especially in harsh environments. It is highly resistant to pitting and stress corrosion cracking, making it ideal for demanding applications in the oil, gas, and marine industries. Key Features of DIN 2527 Blind Flanges: Material Variety: DIN 2527 blind flanges are available in different materials, including carbon steel, mild steel, stainless steel, alloy steel, and special alloys like Inconel or Duplex steel, offering a wide range of options to meet the needs of different environments, temperatures, and pressures. Pressure and Temperature Ratings: These flanges are available in different pressure ratings such as PN6, PN10, PN16, PN25, and PN40, ensuring they can withstand the required pressures for various industrial applications. Dimensional Standards: The DIN 2527 standard ensures precise dimensional accuracy, allowing for reliable sealing and easy installation in piping systems. These flanges are available in various nominal diameters, typically ranging from DN10 (1/2 inch) to DN600 (24 inches) or more, depending on the system requirements.

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message

Still searching for
machinable iron fe?