Kolkata
+919029362692

'environmental demands'

Items tagged with 'environmental demands'

product image
U Type Half Round Tube Shield

Half Round Tube Shield Half Round Tube Shields by Ladhani Metal Corporation are precision-formed protective sleeves designed to guard heat exchanger and boiler tubes from high-temperature corrosion, erosion, and mechanical wear. These shields are used extensively across thermal power, petrochemical, and process industries to improve tube longevity and reduce maintenance costs. Their half-round design allows easy installation without dismantling the tube system. SS 304L U Type Half Round Tube Shield The SS 304L U Type Half Round Tube Shield is designed to protect both straight and curved (U-bend) tube sections in heat exchangers, superheaters, and boilers. Made from low-carbon stainless steel 304L, this shield provides excellent corrosion resistance and is particularly suitable for applications where post-weld heat treatment is not feasible. Its U-shaped profile ensures secure coverage of return bends, which are often the most vulnerable to thermal stress and flue gas attack. This shield is available in both inner and outer configurations to ensure full tube coverage. This shield is available in two key configurations to provide complete protection around the bend radius: • Outer U Type Half Round Tube Shield – Covers the external curvature of U-bend tubes exposed to radiant heat, slag, and gas flow. • Inner U Type Half Round Tube Shield – Protects the internal arc of bends from turbulence, scaling, and localized heat buildup. Ladhani Metal Corporation is a trusted manufacturer and exporter of SS 304L U Type Half Round Tube Shields, delivering durable and customized protection solutions for global industrial applications. Chemical Composition of SS 304L – Austenitic Stainless Steel • Carbon (C): ≤ 0.035% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 18.0 – 20.0% • Nickel (Ni): 8.0 – 12.0% • Iron (Fe): Balance Applications: Ideal for high-temperature and corrosive environments where low carbon content is preferred to minimize carbide precipitation during welding. Uses • U-bend tube shielding in superheaters and heat exchangers • Return bend protection in boilers and WHRBs • Shielding of curved coils in steam reforming and process plants • Corrosion prevention in waste-to-energy and flue gas-exposed systems • Surface protection in ammonia plants, HRSGs, and incinerators Features • corrosion resistant – SS 304L offers excellent resistance to oxidation, scaling, and chemical attack in high-temperature environments • low carbon content – minimizes risk of carbide precipitation during welding, improving post-weld corrosion resistance • precise fit – custom-formed to match U-bend radius for secure installation and effective shielding • high durability – retains mechanical strength under thermal cycling and flue gas exposure • easy installation – designed for quick on-site mounting via clamping, welding, or banding • versatile finish – available in pickled, passivated, or bright annealed surface treatments • customizable – produced in various lengths, thicknesses, and diameters as per customer requirements Applications • Thermal power plants – Protects U-bend tubes in superheaters, reheaters, and economizers. Prevents oxidation, scaling, and thermal damage from flue gases. • Petrochemical refineries – Shields curved furnace and exchanger tubes. Resists heat, carburizing gases, and corrosive media. • Waste heat recovery systems (WHRBs) – Guards return bends from ash erosion and gas turbulence. Enhances tube life in incinerators, engines, and kilns. • Chemical and fertilizer plants – Used on U-bends in reactors and reformers. Prevents stress corrosion and thermal fatigue. • HRSGs and boilers – Installed on return coils exposed to high-temperature flue gases. Ensures reliable operation under cyclic heating conditions. Conclusion The SS 304L U Type Half Round Tube Shield by Ladhani Metal Corporation provides comprehensive and long-lasting protection for U-bend tube sections operating in aggressive thermal and corrosive environments. Manufactured with high-precision forming and superior materials, these shields offer reliable coverage, excellent weldability, and extended service life. As a leading manufacturer and exporter, Ladhani Metal Corporation offers customized shielding solutions that match your project’s specifications and environmental demands. For detailed specifications, technical support, or to request a quotation, please contact Ladhani Metal Corporation.

Send Message
product image
Half Round Tube Shield

Half Round Tube Shield Half Round Tube Shields by Ladhani Metal Corporation are precision-engineered components used to protect tubes in boilers, heat exchangers, and high-temperature process systems. Designed to reduce tube erosion, oxidation, and thermal fatigue, these shields play a critical role in maintaining the longevity and reliability of industrial equipment in thermally aggressive and corrosive environments. Cr23Ni13 Half Round Tube Shield The Cr23Ni13 Half Round Tube Shield is a semi-cylindrical protective sleeve manufactured from high-alloy stainless steel containing approximately 23% chromium and 13% nickel. This alloy provides excellent resistance to high-temperature oxidation, scaling, and corrosion, particularly in systems operating up to 1000°C. With an austenitic microstructure, Cr23Ni13 exhibits good strength, ductility, and resistance to thermal shock, making it ideal for use in heat-intensive industrial processes. The half-round shape allows for easy installation over existing tubes, creating a strong and secure shield against gas flow, flame impingement, and particulate erosion. Chemical Composition of Cr23Ni13 – Austenitic Heat-Resistant Stainless Steel • Carbon (C): ≤ 0.12% • Silicon (Si): ≤ 1.50% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.040% • Sulfur (S): ≤ 0.030% • Chromium (Cr): 22.0 – 24.0% • Nickel (Ni): 12.0 – 14.0% • Iron (Fe): Balance Uses • Superheater and Reheater Tube Protection – Prevents scaling and oxidation on boiler tubes exposed to high flue gas temperatures in thermal power stations. • Furnace Tube Shielding – Shields radiant and convection tubes from flame impingement, heat distortion, and thermal fatigue in process furnaces. • Heat Exchanger Tubes – Offers external protection against erosion and scaling in petrochemical and refining systems operating with hot gases. • Power and Steam Generation Systems – Used to protect steam tubing from oxidation and surface wear in continuous service at elevated temperatures. • Industrial Kilns and Incinerators – Guards exposed piping in rotary kilns and combustion chambers against corrosive deposits and heat damage. Features • High-Temperature Resistance – Performs reliably in continuous service up to 1000°C, maintaining strength and dimensional stability. • Oxidation and Scaling Protection – Chromium-rich composition creates a protective oxide layer that resists corrosion in oxidizing environments. • Austenitic Microstructure – Provides good mechanical strength, thermal expansion resistance, and excellent ductility under heat cycling. • Precision Half-Round Form – Designed for fast, secure installation over round tubes using welding or clamping techniques. • Durable Construction – Withstands vibration, thermal shock, and erosive gas flow common in industrial boilers and furnaces. • Custom Manufacturing – Offered in various diameters, wall thicknesses, and lengths to match specific application demands. • Optional Finishes – Available in pickled, passivated, or bright annealed surface finishes based on environmental and operational needs. Applications • Thermal and Utility Boilers – Shields superheater and economizer tubes from high-temperature corrosion and ash erosion. • Petrochemical Plants – Used in process heaters and reactors where external tube surfaces are exposed to oxidizing or carburizing atmospheres. • Refineries – Protects tubes in fired heaters and reformers against oxidation and mechanical degradation. • Waste-to-Energy Facilities – Guards boiler tubes from hot flue gas erosion and acidic gas corrosion in incineration systems. • Metallurgical Furnaces – Applied in steel and non-ferrous heat treatment plants to prevent oxidation and scale accumulation. • Cement and Lime Plants – Protects gas ducting and tube banks in preheaters, coolers, and flue recovery systems from abrasive dust and heat exposure. Conclusion The Cr23Ni13 Half Round Tube Shield by Ladhani Metal Corporation offers a reliable and efficient solution for tube protection in high-temperature and oxidizing environments. Its austenitic stainless steel composition ensures superior oxidation resistance, structural integrity, and longevity under continuous thermal stress. Whether used in boilers, furnaces, or reformers, these shields effectively reduce downtime, maintenance costs, and the risk of unexpected tube failures. With flexible customization, quality-controlled fabrication, and proven material performance, Ladhani Metal Corporation remains a trusted supplier of advanced shielding solutions for critical industrial applications. For detailed specifications, customization requests, or to obtain a quote, please contact Ladhani Metal Corporation.

Send Message
product image
Stainless Steel Flanges

DIN 2632 stainless steel flanges PN 10 are precision-engineered weld neck flanges manufactured in accordance with the DIN 2632 standard. These flanges are designed for medium-pressure applications up to 10 bar (145 psi), providing strong, leak-proof connections in a wide range of industrial piping systems. Produced from high-quality stainless steel grades such as 304, 316, and 321, they deliver excellent corrosion resistance, mechanical strength, and durability even under moderately demanding environmental and operational conditions. Ladhani Metal Corporation is a globally recognized manufacturer and supplier of stainless steel flanges, committed to consistent quality and engineering accuracy. Each flange is carefully inspected to meet relevant industry standards and environmental regulations. Pressure Rating: • PN 10 (10 bar / 145 psi): Suitable for medium-pressure pipeline systems requiring robust joint integrity and corrosion resistance. Flange Type: • Weld Neck Flanges Designed with a long tapered hub to provide secure pipe alignment and minimize stress concentrations at the flange base. This ensures smooth flow transitions and reduces turbulence. • Flat Face (FF) Flanges Flat face design facilitates even gasket compression and is ideal for systems using cast components or soft gasket materials. Stainless Steel Grades and Full Composition: Stainless Steel 304 • Chromium (Cr): 18.0 – 20.0% • Nickel (Ni): 8.0 – 10.5% • Carbon (C): ≤ 0.08% (304), ≤ 0.03% (304L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Suitable for general-purpose medium-pressure systems including potable water lines, food-grade applications, and light chemical processing. Stainless Steel 316 • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Carbon (C): ≤ 0.08% (316), ≤ 0.03% (316L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Provides enhanced corrosion resistance for systems exposed to chlorinated water, cleaning chemicals, and mildly acidic environments. Common in pharmaceutical, marine, and chemical processing pipelines. Stainless Steel 321 • Chromium (Cr): 17.0 – 19.0% • Nickel (Ni): 9.0 – 12.0% • Titanium (Ti): ≥ 5 × C (typically 0.20 – 0.70%) • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Ideal for moderate temperature and corrosion environments, frequently used in exhaust systems, thermal processing, and hygienic food equipment. Applications of DIN 2632 Stainless Steel Flanges PN 10: • Water Supply and Treatment Used in potable water and wastewater systems requiring medium-pressure handling. • Food and Beverage Industry Suitable for hygienic piping systems that operate at moderate pressures and require corrosion resistance. • Chemical Distribution Commonly used in pipelines carrying diluted or mildly aggressive chemicals. • HVAC and Ventilation Applied in duct flanges and connections for air handling and medium-pressure ventilation systems. Key Features: • Manufactured as per DIN 2632 standards • PN 10 pressure rating for medium-pressure service • Weld neck design enhances pipe-flange joint strength • Available in stainless steel grades 304, 304L, 316, 316L, and 321 • Resistant to corrosion with long service life under mechanical and environmental stresses • Suitable for food-grade, chemical, water, and HVAC applications • Custom sizes, finishes, and material grades available on request Conclusion: DIN 2632 Stainless Steel Flanges PN 10 from Ladhani Metal Corporation are engineered to meet the demands of medium-pressure industrial applications where reliability, corrosion resistance, and durability are critical. Manufactured from premium stainless steel materials, these weld neck flanges provide an economical and dependable solution across sectors such as water treatment, food processing, chemical distribution, and HVAC systems. For custom requirements, technical support, or pricing information, contact Ladhani Metal Corporation today

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC06 DIN EN 10130 1.0873 The special deep-drawing grade DC06 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the requirements and test methods for cold-rolled products used in various industrial applications, especially where high demands are placed on formability and surface quality. DC06 is an ultra-low carbon steel characterized by outstanding cold formability. The chemical composition of DC06 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC06 contains a maximum of 0.01% carbon, a maximum of 0.20% manganese and only minimal traces of phosphorus and sulphur. This small amount of alloying elements contributes to the steel’s exceptional formability and weldability. The mechanical properties of DC06 are also clearly defined. The material has a maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. In addition, DC06 has an elongation at break of at least 40%, which underlines its excellent formability. These properties make DC06 particularly suitable for the production of complex and precise components that require high formability, such as deep-drawn body parts in the automotive industry or sophisticated components in the household appliance industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of the end user. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC06. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC06, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC06 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC06 therefore retains its outstanding cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC06. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC06 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC06 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on outstanding formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC06 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC06 DIN EN 10130 1.0873 The special deep-drawing grade DC06 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the requirements and test methods for cold-rolled products used in various industrial applications, especially where high demands are placed on formability and surface quality. DC06 is an ultra-low carbon steel characterized by outstanding cold formability. The chemical composition of DC06 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC06 contains a maximum of 0.01% carbon, a maximum of 0.20% manganese and only minimal traces of phosphorus and sulphur. This small amount of alloying elements contributes to the steel’s exceptional formability and weldability. The mechanical properties of DC06 are also clearly defined. The material has a maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. In addition, DC06 has an elongation at break of at least 40%, which underlines its excellent formability. These properties make DC06 particularly suitable for the production of complex and precise components that require high formability, such as deep-drawn body parts in the automotive industry or sophisticated components in the household appliance industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of the end user. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC06. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC06, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC06 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC06 therefore retains its outstanding cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC06. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC06 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC06 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on outstanding formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC06 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC07 DIN EN 10130 1.0873 The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality. DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength. The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry. The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC07 DIN EN 10130 1.0873 The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality. DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength. The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry. The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.

Send Message

Still searching for
environmental demands?