Kolkata
+919029362692

'cold drawn'

Items tagged with 'cold drawn'

product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC06 DIN EN 10130 1.0873 The special deep-drawing grade DC06 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the requirements and test methods for cold-rolled products used in various industrial applications, especially where high demands are placed on formability and surface quality. DC06 is an ultra-low carbon steel characterized by outstanding cold formability. The chemical composition of DC06 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC06 contains a maximum of 0.01% carbon, a maximum of 0.20% manganese and only minimal traces of phosphorus and sulphur. This small amount of alloying elements contributes to the steel’s exceptional formability and weldability. The mechanical properties of DC06 are also clearly defined. The material has a maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. In addition, DC06 has an elongation at break of at least 40%, which underlines its excellent formability. These properties make DC06 particularly suitable for the production of complex and precise components that require high formability, such as deep-drawn body parts in the automotive industry or sophisticated components in the household appliance industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of the end user. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC06. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC06, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC06 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC06 therefore retains its outstanding cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC06. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC06 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC06 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on outstanding formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC06 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC06 DIN EN 10130 1.0873 The special deep-drawing grade DC06 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the requirements and test methods for cold-rolled products used in various industrial applications, especially where high demands are placed on formability and surface quality. DC06 is an ultra-low carbon steel characterized by outstanding cold formability. The chemical composition of DC06 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC06 contains a maximum of 0.01% carbon, a maximum of 0.20% manganese and only minimal traces of phosphorus and sulphur. This small amount of alloying elements contributes to the steel’s exceptional formability and weldability. The mechanical properties of DC06 are also clearly defined. The material has a maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. In addition, DC06 has an elongation at break of at least 40%, which underlines its excellent formability. These properties make DC06 particularly suitable for the production of complex and precise components that require high formability, such as deep-drawn body parts in the automotive industry or sophisticated components in the household appliance industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of the end user. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC06. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC06, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC06 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC06 therefore retains its outstanding cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC06. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC06 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC06 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on outstanding formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC06 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC07 DIN EN 10130 1.0873 The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality. DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength. The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry. The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. DC07 DIN EN 10130 1.0873 The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality. DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength. The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry. The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
Titanium Gr 5 Flanges

Product Name: Titanium Gr 5 flanges Standard: ASME B16.5 Material: Gr5 Unit Price: $25usd/pc-$85usd/pc Sealing Surface: RF, FF, TG, RJ etc. Size: NPS 1/2 - NPS 24(DN 10 - 2000) Pressure: 150#-2500# Titanium Gr 5 Flanges Product name: Titanium flange,titanium wn flange,titanium blind flange, titanium so flange, titanium alloy flange, titanium flange in stock,ANSI B16.5 titanium flange Material: Gr5 Standard: ANSI B16.5, ASME B16.5, EN1092-1, JIS B2220, DIN2627-2628 Size: 1/2"~ 30"NB, NPS 1/2 - NPS 24 (DN 10 - 2000) . Pressure Clase: PN0.25~32Mpa/ (DIN) PN6,PN10,PN16,PN25 though PN250/ 150LB, 250LB ,300LB, 400 LB,500LB, 600 LB,900LB, 1500LB,2500LB. Sealing Surface: RF, FF, TG, RJ etc. Technique: Forged and CNC Machined Inspection: UT% , PT% Certificate: ISO9001, TUV etc. Chemical composition (Wt%) Grade Ti C Fe H N O Al V Ti Grade5 90 min – 0.25 max – – 0.2 max 6 min 4 min Physical Properties (Min) Element Density Melting Point Tensile Strength Yield Strength (0.2%Offset) Elongation Titanium Gr. 5 4.43 g/cm3 1632 °C (2970 °F) Psi – 138000 , MPa – 950 Psi – 128000 , MPa – 880 14 %

Send Message
product image
Titanium Tubes For Heat Exchanger

Product name: Titanium Tubes For Heat Exchanger Standard:ASTM B338 Material:Grade 1 Grade 2 titanium Diameter:15mm 19.1mm 25.4mm 33.4mm 38.1mm 45mm etc. Wall thickness:1.0mm / 1.2mm Length:Max 16000mm Surface:Pickling surface/Polished Type:Seamless, welded Application:Heat Exchanger, chemical industry etc. Technique:Rolled Titanium Tubes For Heat Exchanger Titanium tubes are corrosion resistant in seawater and chlorine. It is alloyed with elements such as iron, vanadium, aluminum and molybdenum to produce strong and light alloys for industrial purposes such as chemical industry, seawater desalination plant, petrochemical, papermaking and pulp. The most common dimensions of titanium seamless or titanium welded tubes for heat exchangers and pressure vessels are od0.5 "(12.7mm), 0.63" (16mm), 0.75 "(19.05mm), 1" (25.4mm), 1.25 "(31.75mm), 1.5" (38.1mm), 1.78 "(45mm), 2" (50.8mm), etc., and wt0.02 "(0.5mm), 0.024" (0.6mm), 0.028 "(0.71mm), 0.035" (0.89mm) , 0.049 "(1.24mm), 0.11" (2.77mm), 0.125 "(3.17mm), etc. Product name Titanium tubes for heat exchanger,ASTM B338 titanium tube pipe,Seamless titanium tube,Welded titanium tubes,Titanium tube price per kg Grade Gr1 Gr2 Different types of Titanium heat exchanger tubes Seamless, Welded Standard ASME /ASTM B 338 Straightness of heat exchanger tubes 0.0015 x L. In conversion , 1 meter length OUTER DIAMETER (OD) 0.500 - 3.000 inch heat exchanger tubes manufacturer 12.7 - 76.2 mm WALL THICKNESS (WT) 0.035 - 0.220 inch 0.89 - 5.52 mm Lengths Titanium heat exchanger tubes are delivered in straight lengths up to 16.5 meters (54 ft). Titanium U-bent tubes are available on request. Manufacturing Method Seamless (Cold Drawn/Cold Rolling) Heat exchanger tubes Certified test reports ASTM / ASME A450 EN 10204: for EN 10297 nonspecified testing (only the mandatory tests), 2.2 specified testing – 3.1.B after agreement - 3.1.A, 3.1.C, 3.2 DIN 50049, - 2.2, 3.1. B Pipe Assemby Headers Pigtails Flanged Pipes Longitudinal finned Pipes and Tubes Finned Tubes Special Forgings Special designed parts acc. to drawing Welding together possible Grades of Seamless Titanium Heat Exchanger Tubes ASTM GRADE UNS NO. DIN/ EN MATERIAL CODE Grade 1 R50250 3.7025 Ti 1 Grade 2 R50400 3.7035 Ti 2 Grade 3 R50550 3.7055 Ti 3 Grade 7 R52400 3.7235 Ti 2 Pd Grade 9 R56320 3.7195 Ti Al 3 V 2,5 Grade 11 R52550 3.7225 Ti 1 Pd Grade 12 R53400 3.7105 Ti Ni 0,8 Mo 0,3

Send Message
product image
Titanium Seamless Pipe For Heat Exchanger

Product Name: Titanium seamless pipe for heat exchanger Standard: ASTM B338 Material: Gr1, Gr2 Unit Price: $25usd/kg-$40usd/kg Type: Seamless Shape: Round Outer Diameter: 21.3mm-609.6mm etc. Wall Thickness: 1.24-30mm Length: Max 16000mm Surface: Bright Titanium seamless pipe for heat exchanger The grade 2 titanium tube consists of commercial pure titanium or Unalloyed titanium. The oxygen content of grade 2 is standard. ASTM b861 GR 2 pipes can be easily welded. It also has excellent strength and ductility. The natural strength of metal is used for applications requiring very high strength, and the corrosion resistance is used for long-term appliances. Although most use cases are in industrial standards, titanium grade 2 seamless pipes can also be used in aesthetic and home applications. Due to the cost of raw materials and production costs, the cost is very high. The content of titanium in commercial pure CP grade 2 titanium welded pipe exceeds 99%. It can be cold drawn into titanium seamless pipe or hot rolled into welded pipe. They are used in high temperature applications, such as titanium 2-stage exhaust pipes, which can maintain their shape due to their high thermal conductivity, low thermal expansion and high oxidation resistance at high temperatures.

Send Message
product image
Gr7 Titanium Welding Wire

Product name:Titanium grade 7 welding wire Standard : AWS a5.16 , ASME SFA 5.16 Grade : GR7 (ErTi-7,Ti-0.2Pd ) Diameter : 1.0mm 1.2mm 1.6mm 2.0mm 2.4mm 3.2mm etc. Shape : Coil,spool,straight. Surface : Pickling surface/bright surface Application :Welding Description Gr7 Titanium Welding Wire Product Gr7 titanium welding wire/ gr7 titanium tig wire Size Straight: Dia.: 1.0mm-5.0mm (0.04"-0.02", tolerance: +/-0.05mm, +/-0.002") 3000mm (118") max length Coiled: Dia.: 0.5mm-5.0mm (0.02", tolerance: +/-0.05mm, +/-0.002") Spool diameter: around 300mm (12") Material Grade 7 titanium Standard AWS 5.16, etc. Surface Black, Pickled, Polished (for dia. >1mm) Shape Straight or Coiled Grade 7 (Ti-0.2Pd) titanium wire Chemical compositions(weight%,<=) Pd Al V Fe C 0.12-0.25 ---- ---- 0.30 0.08 N H O Other(total) Ti 0.05 0.015 0.2 0.4 Remainder Physical properties(>=) Σb Tensile Strength (Mpa) σr0.2 Yield Strength (Mpa) δL0+50mm Elongation (%) ψ Reduction of area (%) 370 250 20 25

Send Message
product image

Distributor & High Volume Supplier CP Titanium – Commercially Pure Titanium Titanium CP4 – Grade 1 Commercially Pure Titanium Grade 1 is the softest titanium and has the highest ductility. It has good cold forming characteristics and provides excellent corrosion resistance. It also has excellent welding properties and high impact toughness. Applications Architecture, Automotive Desalination, Dimensional Stable Anodes, Medical, Marine, Processing & Chlorate Manufacturing Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, ASME SB-265, ASME SB-337, ASME SB-338 Forms Available Bar, Flanges, Forgings, Sheet, Welding Wire Titanium CP3 – Grade 2 Commercially Pure Titanium Grade 2 has moderate strength and excellent cold forming properties. It provides excellent welding properties and has excellent resistance to oxidation and corrosion. Applications Aerospace, Automotive, Chemical Processing & Chlorate Manufacturing, Desalination, Architecture, Hydro Carbon Processing, Marine, Medical, Power Generation Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4902, ASME SB-337, ASME SB-338, AMS 4942 Forms Available Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Welding Wire, Wire Titanium CP2 – Grade 3 Commercially Pure Titanium Grade 3 is stronger and less formable than Titanium Grades 1 and 2. It is used in Aerospace and industrial applications that require moderate strength. Grade 3 titanium has excellent corrosion resistance. Applications Aerospace, Architecture, Automotive, Chemical Processing & Chlorate Manufacturing, Desalination, Hydro Carbon Processing, Marine, Medical, Power Generation, Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4902, ASME SB-337, ASME SB-338, AMS 4942 Forms Available Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Welding Wire, Wire Titanium CP1 – Grade 4 Commercially Pure Titanium Grade 4 is stronger than CP Grades 2 & 3 – it can be cold formed, but has lower ductility. It has excellent corrosion resistance in a wide variety of environments. Grade 4 titanium is commonly used in Aerospace, Industrial and Medical applications where high strength is needed. Applications Aerospace, Chemical process, Industrial, Marine, Medical Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4901, ASME SB-338 Forms Available Bar, Forgings, Sheet, Welding Wire, Wire Titanium Grade 7 Titanium Grade 7 has physical and mechanical properties equivalent to CP3 titanium or Grade 2. It has excellent welding and fabrication properties and is extremely resistant to corrosion especially from reducing acids. Applications Chemical Processing, Desalination, Power generation Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASME SB-265, ASME SB-337, ASME SB-338, Forms Available Bar, Forgings, Plate, Sheet, Tube, Welding Wire, Wire Titanium Grade 11 – CP Ti-0.15Pd Titanium Grade 11 is highly resistant to corrosion has similar physical and mechanical properties to Titanium CP Grade 2. Applications Chemical processing, Desalination Power generation, Industrial Standards ASME SB-338 Forms Available Tube Titanium Based Alloys Titanium Grade 5 – Titanium 6Al-4V Titanium Grade 5 alloy is the most commercially available of all titanium alloys. It offers an excellent combination of high strength and toughness. Grade 5 titanium has good welding and fabrication characteristics. Applications Aerospace, Chemical Processing, Marine, Medical Standards ASME SB-265, AMS 4911, ASME SB-348, AMS 4928, AMS 4965, AMS 4967 Forms Available Titanium Grade 6 – Titanium 5Al-2.5Sn Titanium Grade 6 alloy offers good weldability, stability and strength at elevated temperatures. Applications Aerospace Standards ASME SB-381, AMS 4966, MIL-T-9046, MIL-T-9047, ASME SB-348, AMS 4976, AMS 4956, ASME SB-265, AMS 4910, AMS 4926 Forms Available Bar, Forgings Plate, Sheet, Wire Titanium Grade 9 – Titanium 3Al-2.5V Titanium Grade 9 has medium strength that falls between Grade 4 and Grade 5. It has excellent corrosion resistance and is used in Aerospace and Industrial applications. Grade 9 Titanium can be used at higher temperatures than Grades 1 through 4. Grade 9 titanium has good cold rolling properties. Applications Aerospace, Automotive, Chemical processing, Consumer applications, Marine, Medical, Transportation Standards AMS 4943, AMS 4944, ASME SB-338 Forms Available Bar, Forgings Plate, Sheet, Wire Titanium Grade 12 – Ti-0.3-Mo-0.8Ni This Titanium Grade 12 alloy is similar to Titanium Grades 2 and 3 except that Titanium Grade 12 has 0.3% molybdenum and 0.8% nickel. This offers enhanced corrosion resistance. Applications Chemical processing, Desalination, Power generation, Industrial Standards ASME SB-338 Forms Available Tube Titanium Grade 19 – Titanium Beta C Titanium Grade 19 has very high strength and can be heat treated. It offers good resistance to stress and corrosion. Applications Aerospace Automobile Standards MIL-T-9046, MIL-T-9047, ASME SB-348, AMS 4957, AMS 4958, ASME SB-265 Titanium Grade 23 – Titanium 6Al-4V ELI Titanium Grade 23 is similar to Grade 5 but has lower oxygen, nitrogen and iron. It has better ductility and fracture toughness than Titanium Grade 5. Applications Aerospace, Chemical Processing, Marine, Medical Standards AMS 4911, AMS 4928, AMS 4930, AMS 4931, AMS 4935, AMS 4965, AMS 4967, AMS 4985, AMS 4991, MIL -T-9046, MIL -T-9047, BSTA 10,11,12, BSTA 28,56,59, DIN 3.7165, AMS 4907 ELI, AMS 4930 ELI, AMS 4956 ELI, ASTM F136 ELI, UNS R56407 Forms Available Bar, Forgings, Plate, Sheet, Welding Wire, Wire Titanium 6Al-6V-2Sn – Titanium 6-6-2 Titanium 6-2-4-2 has excellent strength, stability, and creep resistance to temperatures as high as 550 °C. Applications Gas, Turbine Compressor Engine afterburner, Aerospace Standards AMS 4919, AMS 4952, AMS 4975, DIN 3.7164, GE B50 TF22, GE B50TF21, GE B50TF22, GE C50TF7, MIL F-83142, MIL T-9046, MIL T-9047, PWA 1220, UNS R54620 Forms Available Bar, Plate, Sheet Titanium 6Al-2Sn-4Zr-2Mo – Titanium 6-2-4-2 Titanium 6Al-6V-2Sn is a two-phase, Alpha Beta Alloy. It is usually used in the annealed or solution treated and aged conditions. It’s a heat treatable, high strength alloy with lower toughness and ductility than Titanium Grade 5 (6Al-4V) and it’s difficult to weld. Cold forming of Titanium 6Al-6V-2Sn is difficult because of its high strength and the large amount of spring-back that results. This grade can be welded by the inert gas shielded, fusion welding process but the heat effected area will have less ductility and toughness than the parent material. The hardness of Titanium 6-6-2 is approximately Rockwell C 36-38. This grade is primarily used for airframe and jet engine parts, rocket engine cases and ordinance components. Please call us to determine our minimum item quantity. Applications Airframe Components, Jet Engine Parts, Ordinance Components, Rocket Engine Cases Standards AMS 4981, MIL-T-9047, Forms Available Bar, Wire Sheet, Plate, Forgings, Fittings, Flanges, Seamless Pipe, Seamless Tube, Welded Pipe, Welded Tube Titanium 6Al-2Sn-4Zr-6Mo – Titanium 6-2-4-6 Titanium 6Al-2Sn-4Zr-6Mo is an Alpha-Beta Alloy and it’s generally regarded as the workhorse alloy of the titanium industry. The alloy is fully heat-treatable in section sizes up to one inch and is used up to approximately 400°C (750°F). Since it is one of the most commonly used alloys (over 70% of all alloy grades melted are a sub-grade of Ti-6-4,) its uses span many aerospace engine and airframe components. Titanium 6Al-2Sn-4Zr-6Mo is also used in lots of non-aerospace applications such as marine, offshore and power generation industries. This Alpha-Beta Alloy combines good corrosion resistance and strength with weldability and fabricability. The alloy is generally available in bar form and it’s typically used in deep sour well applications. This alloy can be hot or cold formed. Please call us to determine our minimum item quantity. Applications Aerospace Engines, Airframe Components, Marine Applications, Offshore Applications, Power Generation Applications Standards AMS 4981 Forms Available Bar, Plate, Sheet Titanium 8Al-1Mo-1V – Titanium 8-1-1 Titanium 8Al-1Mo-1V is a near Alpha Alloy that was primarily designed for use at elevated temperatures – up to 455 degrees centigrade. It offers the highest modulus and lowest density of all Titanium alloys. It has good creep strength and it’s weldable by the inert gas fusion and resistance-welding processes. Titanium 8Al-1Mo-1V is used in the annealed condition for such applications as airframe and jet engine parts that demand high strength, superior creep resistance and a good stiffness-to-density ratio. The machinability of this grade is similar to that of Titanium 6Al-4V. Please call us to determine our minimum item quantity. Applications Airframe Parts, Jet Engine Parts Standards MIL-T-9046, MIL-T-9047, AMS 4972, AMS 4915, AMS 4973, AMS 4955, AMS 4916 Forms Available Forgings, Bar, Sheet, Plate, Strip, Extrusions, Wire Titanium 10V-2Fe-3Al Titanium 10V-2Fe-3Al is a Titanium Beta Alloy. It is harder and stronger than many titanium alloys. This Titanium is a heat treatable alloy, it’s weldable and it’s easily formed. Titanium 10V-2Fe-3Al is an all Beta Alloy and is more difficult to machine than most titanium alloys. The chief problems include flank wear, spring-back and chip control. Because of these characteristics, positive rake chip grooves in combination with light hones on the cutting edge are advantageous. Please call us to determine our minimum item quantity. Applications Airframe Components, Compressor Blades, Disks, Wheels and Spacers Standards AMS 4983, AMS 4984, AMS 4986, AMS 4987 Forms Available Bar, Forgings, Plate, Sheet, Seamless Pipe, Seamless Tube, Welded Pipe, Welded Tube, Wire Titanium 15V-3Cr-3Sn-3Al This Metastable-Beta Alloy is used primarily in sheet metal form. It is age-hardenable and highly cold-formable. Titanium 15V-3-3-3 is often used to replace hot-formed Titanium Grade 5 (6Al-4V) sheet. It can also be produced as foil and is an excellent alloy for castings. For aerospace applications, this grade is often specified as AMS 4914. Please call to determine the minimum item quantity. Applications Aerospace Tank Applications, Airframe Applications, Castings, Fasteners High Strength Hydraulic Tubing Standards AMS 4914, ASTM B265 Forms Available Sheet, Foil Titanium Alpha Alloys Commercially pure titanium and alpha alloys of titanium are non-heat treatable and have very good welding characteristics. Applications Cryogenic applications, Airplane parts, Chemical processing equipment Standards AMS 4973, AMS 4976, AMS 4924, AMS 4972, MIL-T-9047, AMS 4910, ASTM B265, GR-6 MIL-T9046, AMS 4909, AMS 4915/4916, AMS 4966, AMS 4924, AMS 4973, AMS 4933, MIL-T-81556A A-1, MIL-T-81556A A-2, MIL-T-81556A A-4 Forms Available Bar, Forgings, Plate, Sheet Extrusions Titanium Beta Alloys Titanium Beta or near Beta Alloys are: Fully heat treatable Generally weldable Capable of high strengths Possess good creep resistance up to intermediate temperatures In the solution treated condition, excellent formability can be expected from Beta Alloys Titanium Beta Alloys are ideal for sporing applications. Common Titanium Beta Alloys include: Ti3Al8V6Cr4Mo4Zr ASTM Grade 19 Ti-3Al-8V-6Cr-4Mo-4Zr AMS 4983, 4984, 4987 Ti-10V-2Fe-3Al ASTM Grade 21 Ti-15Mo-3Nb-3Al-2Si AMS 4914 Ti-15V-3Cr-3Sn-3Al The Metastable Titanium Beta Alloys are heat treatable by solution treatment and ageing. Fully stable beta alloys can only be annealed. Applications Aerospace, Standards AMS 4914, AMS 4983, AMS 4984, AMS 4987, ASTM Grade 19, ASTM Grade 21 Forms Available Forgings Titanium Alpha-Beta Alloys Titanium Alpha Beta alloys are heat treatable and most of them are also weldable. The typical properties of Titanium Alpha Beta Alloys are: Medium to high strength levels; High temperature creep strength is not as less than most alpha alloys; Limited cold forming but hot forming qualities are normally good; The most commonly used Titanium Alpha Beta Alloy is Ti 6Al-4V. Titanium 6Al-4V has been developed in many variations of the basic formulation for numerous and widely differing applications. Other Titanium Alpha Beta Alloys include: 6Al-4V-ELI 6Al-6V-2Sn 6Al-2Sn-4Zr-2Mo 3Al-2.5V 8Mn Applications Aircraft and aircraft turbine parts, Chemical processing equipment, Marine hardware, Prosthetic devices Standards ASME SB-265, AMS 4911, ASME SB-348, AMS 4928, AMS 4965, AMS 4967, AMS 4981, MIL-T-9047, AMS 4930, AMS 4971, AMS 4907, ASTM F 136, MIL-T-9046, AMS 4918, DMS1879/2237, AMS 4908, AMS 4943, ASTM B348, AMS 4975, MIL-T-9047 G, AMS 4928, BMS 7-348, DMS 1570, AMS 4976, AMS 4920, AMS 4934 Forms Available Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Wire Titanium Metals Titanium Specifications Titanium Grades CP4 – Grade 1 CP3- Grade 2 Titanium CP2 – Grade 3 CP1 – Grade 4 Grade 7 Grade 11 – CP Ti-0.15Pd Grade 5 – Titanium 6Al-4V Grade 6 – Titanium 5Al-2.5Sn Grade 9 – Titanium 3Al-2.5V Grade 12 – Ti-0.3-Mo-0.8Ni Grade 19 – Titanium Beta C Grade 23 – Titanium 6Al-4V ELI 6Al-6V-2Sn 6Al-2Sn-4Zr-2Mo 6Al-2Sn-4Zr-6Mo 8Al-1Mo-1V 10V-2Fe-3Al 15V-3Cr-3Sn-3Al Alpha Alloys Beta Alloys Alpha-Beta Alloys Titanium Dioxide TiO2 Titanium Applications Titanium Sheets Titanium Plates Titanium Wire Titanium Tubes & Tubing Titanium Round Bar Titanium Pipe We stock and sell Commercially Pure Titanium and Titanium Alloys in a broad range of forms and sizes. We can deliver production quantities in 90-120 days. close Request A Quote close Home Services Industries Resources About Contact Blog RFQ Sitemap

Send Message

Still searching for
cold drawn?