Kolkata
+919029362692

'application example'

Items tagged with 'application example'

product image
Titanium Sheet For Knife Making

Product name:Titanium sheet for knife making Grades: Gr5(Ti6Al4V) Standard: ASTM B265/ASME B265 Dimension: Thickness*Width:200-3000mm*Length:500-6000mm Supply status: Annealed(M) Package: Carton or plywood case Usually, the titanium alloy plate used for knife is Grade 5 (Ti6Al4V). This grade titanium material is one of the most widely used materials in titanium alloys. It has the same advantages as pure titanium: corrosion resistance, non-toxic, light weight, etc. There are also many of other advantages over pure titanium: higher hardness, tensile strength, yield strength and elongation. Can meet the needs of making knife. Titanium is a good material for knives if your main concern is light weight and corrosion resistance. Titanium knives are ideal for anyone who spends a lot of time around water or performs jobs that require frequent blade cleaning. Product name:Titanium sheet for knife making Grades: Gr5(Ti6Al4V) Standard: ASTM B265/ASME B265 Dimension: Thickness1-150mm*Width:200-3000mm*Length:500-6000mm Supply status: Annealed(M) Package: Carton or plywood case. MTC: EN10204.3.1 certificate MOQ : 10kgs Titanium plate applications

Send Message
product image
Titanium Gr 2 Flanges

Product Name: Titanium Gr 2 flanges Standard: ASME B16.5 Material: Gr2 Unit Price: $25usd/pc-$85usd/pc Sealing Surface: RF, FF, TG, RJ etc. Size: NPS 1/2 - NPS 24(DN 10 - 2000) Pressure: 150#-2500# Grade 2 titanium is the most commonly requested in the pipeline valve and fittings industry, with high strength and corrosion resistance. Titanium is generally used in applications that require high temperature and high pressure service but are lighter in weight. Some good examples are components in the aerospace industry (airframe frames) and state-of-the-art equipment in the military. Given its excellent corrosion resistance in marine and chloride applications, titanium flanges are also popular as offshore drilling components and heat exchanger components. When you need a metal with good overall formability and workability, please choose titanium. It has the capability of hot or cold forming while maintaining its excellent mechanical properties. For transportation to your work site, it is good to know that titanium is much lighter than regular steel (about 40-45% lighter). Although not as light as aluminum, our titanium flanges and fittings are easier to handle during welding and installation. Chemical composition (Wt%) ASTM No. Fe max O max N max C max H max Pd Al Bal Grade 2 0.3 0.25 0.03 0.1 0.015 - - Ti Physical Properties (Min) ASTM Grade Alloy Composition Tensile Strength Yield Strength Elongation min % ksi Mpa ksi Mpa Grade 2 Unalloyed Ti ("Pure") 50A -CP2 64 440 46 320 18

Send Message
product image

Nickel alloys are metals made from combining nickel as the primary element with another material. It merges two materials to deliver more desirable features, such as higher strength or corrosion-resistance. Because of its unique properties, it’s used in a variety of equipment spanning multiple industries. NICKEL ALLOYS (20, 155, 200, 201, 255, 400, 405, 600, 601, 617, 625, 718, X750, 800H, 825, 925, C22, C276, INVAR 36 and more) Common forms include TUBE, PLATE, SHEET, PLATE, ROUND BAR, WIRE, FITTINGS and more What Are Nickel Alloys? Nickel alloy is formed by combining nickel with other metals, commonly titanium, copper, aluminum, iron, and chromium. Approximately 3,000 nickel-based alloys are in use, forming products for numerous industries. Roughly 90% of all new nickel sold every year is used to create alloys. The most popular one is stainless steel, which accounts for approximately two-thirds of new nickel alloys produced. The enhancements this material provides includes: Improved versatilityNickel_Alloy_Sheet Higher toughness Increased corrosion resistance Oxidation resistance Improved strength at higher and lower temperatures Magnetic properties Electronic properties Many nickel-based alloys offer superior performances at temperatures above 1000°C, making them well suited for extremely harsh environments. These offer excellent oxidation resistance at high temperatures while maintaining quality weldability, workability, and ductility. Nickel alloy has a life span between 25 and 35 years on average and can last much longer depending on the application. With its extended service life, this material is more cost effective than other metals. Nickel alloy is recyclable and is among the most recycled materials around the world. Approximately half of the nickel in stainless steel products comes from recycled nickel materials. What Are Nickel Alloys Used For? This material is common in a variety of equipment and items people use each day. Examples include: Cell phones Food preparation equipment Medical equipment Laboratory equipment Transportation Aircraft Pharmaceuticals Building materials Aircraft and power turbines Nuclear power systems Industries That Benefit From Nickel Alloy Industries such as energy, chemical, petrochemical, and power rely on nickel superalloys—those that present superior oxidation resistance and high-temperature strength—in critical applications. Alloys of nickel, chromium, and molybdenum provide enhanced corrosion resistance. Superalloys are made by adding balanced amounts of elements, including chromium, aluminum, cobalt, and titanium, to create optimal directionally solidified or single crystal structures, giving the material a strength that exceeds regular steel. These nickel-based alloys are utilized in extremely hot environments such as in gas turbines for power generation and in aircraft. Nickel alloy that includes iron is popular in electronic and specialty engineering. Nickel alloys with copper are used in marine engineering for their corrosion-resistant properties in seawater. Engineering markets accounted for 27% of all end-use nickel applications as of 2015. Wastewater treatment and plumbing systems have increased their use of this type of stainless steel because it provides very low corrosion rates when handling water, even at high flow rates. It also offers incredible strength and ductility as well as easy fabrication, facilitating the use of less costly joining methods when assembling piping.

Send Message
product image

Titanium – Aerospace Applications Titanium is used in engine applications such as rotors, compressor blades, hydraulic system components and nacelles. Titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications. Due to their high tensile strength to density ratio, high corrosion resistance, and ability to withstand moderately high temperatures without creeping, titanium alloys are used in aircraft, armor plating, naval ships, spacecraft, and missiles. For these applications titanium alloyed with aluminium, vanadium, and other elements is used for a variety of components including critical structural parts, fire walls, landing gear, exhaust ducts (helicopters), and hydraulic systems. In fact, about two thirds of all titanium metal produced is used in aircraft engines and frames. Titanium – Industrial Applications Titanium is used in engine applications such as rotors, compressor blades, hydraulic system components and nacelles. Titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications. Due to their high tensile strength to density ratio, high corrosion resistance, and ability to withstand moderately high temperatures without creeping, titanium alloys are used in aircraft, armor plating, naval ships, spacecraft, and missiles. For these applications titanium alloyed with aluminium, vanadium, and other elements is used for a variety of components including critical structural parts, fire walls, landing gear, exhaust ducts (helicopters), and hydraulic systems. In fact, about two thirds of all titanium metal produced is used in aircraft engines and frames. Titanium – Consumer and Architectural Applications Titanium metal is used in automotive applications, particularly in automobile or motorcycle racing, where weight reduction is critical while maintaining high strength and rigidity. Titanium is used in many sporting goods: tennis rackets, golf clubs, lacrosse stick shafts, cricket, hockey, lacrosse and football helmet grills, and bicycle frames and components. Titanium alloys are also used in spectacle frames. The two most common Titanium alloys used in the cycling industry are 6AL-4V (Grade 5) and 3AI-2.5V (Grade). These two different alloys are both high strength Titanium and are both fairly common in the Industry. Titanium – Medical Applications Because it is bio-compatible (non-toxic and is not rejected by the body), Titanium is used in different medical applications including surgical implements and implants, such as hip balls and sockets (joint replacement) that can stay in place for up to 20 years. Titanium has the inherent property to osseointegrate, enabling use in dental implants that can remain in place for over 30 years. This property is also useful for orthopedic implant applications. Titanium is also used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other products where high strength and low weight are desirable. The unique qualities of titanium also prove to be MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) compatible. Titanium Metals Titanium Specifications Titanium Grades Titanium Dioxide TiO2 Titanium Applications Titanium Sheets Titanium Plates Titanium Wire Titanium Tubes & Tubing Titanium Round Bar Titanium Pipe close Reques

Send Message
product image
Titanium Sheet

Product name:Titanium sheet metal Unit price:$14-$36.9/kg Material: Titanium grade 1 grade 2 grade 3 grade 4 Grade 5 (Ti6al4v),grade 7,grade 12 etc. Standard: ASTM/ASME B265 AMS 4911 ASTM F136 ASTM F67 etc. Demension: Thickness*1000*2000mm Thickness*3000*6000mm (Standard size); Thickness: 0.5mm; 0.8mm; 1.0mm; 1.2mm; 1.5mm; 2.0mm; 3.0mm; 4.0mm ......40mm etc br>Technique : Rolled Status: Annealed(M) Titanium has many obviously superior characteristics: small density (4.5kg/m3), high melting point (1660℃), strong corrosion resistance, high specific strength, good plasticity, but also through alloying and heat treatment methods to produce a variety of alloys with high mechanical properties, is an ideal aerospace engineering structural materials. Titanium sheet metal are commonly used in today's manufacturing industry, and the most commonly used grades are 2 and 5. Grade 2 titanium Grade 2 is commercial pure titanium used in most chemical processing plants and can be cold formed. Ultimate tensile strength of grade 2 plates and sheets up to 40,000 psi and above. Grade 5 titanium Class 5 is an aerospace class that does not allow cold molding and is therefore used more often when molding is not required. Grade 5 aerospace alloys have ultimate tensile strength of 120,000 psi and above. Usually the purpose of using Titanium sheet metal is to really approximate the final size of the part being manufactured. The material is processed to the nearest size of the required parts and the grain structure of the finished product is more uniform. Titanium plates are often used as insulation because titanium prevents heat from being transferred to the rest of the assembly. The titanium plate and titanium plate are bulletproof and provide good protection for the driver during the race. Application example: in addition to the use of industrial pure titanium manufacturing parts, a large number of titanium alloy is used. It is increasingly widely used in aerospace, aerospace, chemical, shipbuilding and other industrial sectors, manufacturing gas turbine components, the production of prosthetic devices and other biological materials

Send Message
product image
Titanium Gr 2 Flanges

Product Name: Titanium Gr 2 flanges Standard: ASME B16.5 Material: Gr2 Unit Price: $25usd/pc-$85usd/pc Sealing Surface: RF, FF, TG, RJ etc. Size: NPS 1/2 - NPS 24(DN 10 - 2000) Pressure: 150#-2500# Grade 2 titanium is the most commonly requested in the pipeline valve and fittings industry, with high strength and corrosion resistance. Titanium is generally used in applications that require high temperature and high pressure service but are lighter in weight. Some good examples are components in the aerospace industry (airframe frames) and state-of-the-art equipment in the military. Given its excellent corrosion resistance in marine and chloride applications, titanium flanges are also popular as offshore drilling components and heat exchanger components. When you need a metal with good overall formability and workability, please choose titanium. It has the capability of hot or cold forming while maintaining its excellent mechanical properties. For transportation to your work site, it is good to know that titanium is much lighter than regular steel (about 40-45% lighter). Although not as light as aluminum, our titanium flanges and fittings are easier to handle during welding and installation. Chemical composition (Wt%) ASTM No. Fe max O max N max C max H max Pd Al Bal Grade 2 0.3 0.25 0.03 0.1 0.015 - - Ti Physical Properties (Min) ASTM Grade Alloy Composition Tensile Strength Yield Strength Elongation min % ksi Mpa ksi Mpa Grade 2 Unalloyed Ti ("Pure") 50A -CP2 64 440 46 320 18

Send Message
product image
90 Degree Bend Tube Shield

The Outer Half Round 90 Degree Bend Tube Shield is fabricated to precisely match the outer arc of 90° tube bends. Its semi-cylindrical form conforms tightly to the external curve, forming a protective barrier that resists abrasive flow and corrosive attack. These shields are typically used in superheaters, reheaters, waste heat recovery boilers (WHRBs), and HRSGs where return bends are most vulnerable. The shields are manufactured from corrosion-resistant stainless steels and heat-resistant alloys, selected based on temperature ratings and media conditions. Ladhani Metal Corporation is a trusted manufacturer, supplier, and exporter of Outer Half Round 90 Degree Bend Tube Shields, offering standard and custom-engineered designs for a wide variety of boiler and heat recovery applications. Available Material Grades • Stainless Steels: SS 304, 304L, 310, 310S, 316, 316L, 410, 420, 430 • Heat-Resistant Alloys: 1Cr13, 1Cr18Ni9Ti, Cr25Ni20, 1Cr25Ni20Si2, Cr23Ni13, 1Cr20Ni14Si2, Inconel 600, and more Typical Chemical Composition (example – SS 316) • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Iron (Fe): Balance Applications: Used in curved tube regions where the external surface is subjected to thermal wear, ash abrasion, and corrosive gases. Uses • Protection of 90-degree U-bends in boiler and superheater tube banks • Return bend shielding in heat exchangers and WHRBs • Safeguarding curved tubes in process heaters, HRSGs, and refinery systems • Applied in thermal, petrochemical, and chemical plant steam systems • Suitable for power generation and heavy industrial boilers Features • Form-fitting design – Precisely matches outer curvature of U-bends for tight, secure installation • Heat and corrosion resistance – Manufactured from materials designed to withstand extreme thermal and chemical environments • Durable protection – Shields critical bend zones from fly ash erosion, soot-blowing wear, and gas impingement • Reduced maintenance – Prolongs tube life and minimizes unplanned outages due to bend failure • Custom-engineered – Fabricated based on user drawings, coil geometry, and tube specifications • Flexible installation – Can be clamped, welded, or banded with minimal disassembly Applications • steam power boilers – Protects outer bend regions from accelerated erosion and high-velocity flue gases • oil and gas refineries – Used in convection section return bends to enhance tube longevity • WHRB and HRSG installations – Shields bend areas exposed to intense ash loading • fertilizer and chemical processing – Ideal for curved coils in high-temperature, corrosive environments • industrial heaters – Ensures safety and long-term performance of curved tube bundles Conclusion The Outer Half Round 90 Degree Bend Tube Shield by Ladhani Metal Corporation – manufacturer, supplier, and exporter – delivers critical protection to return bends in thermal process systems. Designed for curved tube geometry, these shields reduce erosion risk, extend tube service life, and support the reliability of high-performance boilers, reformers, and heat recovery units. For custom sizing, material selection, or technical specifications, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Salem #Erode #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Hassan #Cuttack #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Gaya #Muzaffarpur #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponent

Send Message
product image
Half Round Straight Tube Shield

Half Round Tube Shield Ladhani Metal Corporation manufactures precision-engineered Half Round Tube Shields designed to protect straight sections of boiler and heat exchanger tubes from wear, erosion, scaling, and thermal degradation. These shields are essential in areas where tubes are exposed to high-velocity gas flow, ash impact, or corrosive atmospheres. Their half-round, semi-cylindrical structure allows secure and quick installation on straight tube surfaces without the need for disassembly or major downtime. Half Round Straight Tube Shield The Half Round Straight Tube Shield is designed specifically to protect straight runs of boiler or exchanger tubes in high-temperature, corrosive, and abrasive service environments. These shields act as a barrier between the process medium and the tube surface, reducing the risk of tube thinning, cracking, and premature failure. Fabricated from a variety of stainless steels and heat-resistant alloys, the shields are available in multiple grades to suit varying application demands . Ladhani Metal Corporation is a trusted manufacturer, supplier, and exporter of Half Round Straight Tube Shields, offering customizable shielding solutions for a wide range of thermal process equipment and conditions. Available Material Grades • Stainless Steels: SS 304, 304L, 310, 310S, 316, 316L, 410, 420, 430 • Heat-Resistant Alloys: 1Cr13, 1Cr18Ni9Ti, Cr25Ni20, 1Cr25Ni20Si2, Cr23Ni13, 1Cr20Ni14Si2, Inconel 600, and others Typical Chemical Composition (example – SS 304) • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 18.0 – 20.0% • Nickel (Ni): 8.0 – 10.5% • Iron (Fe): Balance Applications: Designed for use in systems where straight tube lengths are exposed to hot, corrosive gases, ash particles, or scaling environments. Uses • Protection of straight boiler tubes in high-temperature zones • Shielding of exchanger tubes in oil refineries and chemical plants • Surface protection in economizers, superheaters, and reheaters • Applied in Waste Heat Recovery Boilers (WHRBs) and HRSGs • Suitable for utility boilers in thermal and captive power plants Features • Corrosion-resistant – Manufactured from stainless steels and alloys suited for chemical and high-heat environments • Thermal stability – Capable of withstanding prolonged exposure to high temperatures without deformation • Wear protection – Prevents tube erosion from fly ash, flue gas, and thermal cycling • Precise fitment – Custom-bent and sized to match tube diameter and length requirements • Easy installation – Can be clamped, welded, or banded with minimal downtime • Custom options – Available in various lengths, wall thicknesses, and alloy choices Applications • thermal power plants – Protects straight tubes from scale buildup and gas impingement • petrochemical refineries – Used in process heaters and tube exchangers to combat high-temperature corrosion • WHRB systems – Applied in exhaust zones to preserve tube integrity • chemical processing units – Offers reliable protection in corrosive steam and flue environments • pulp and paper industry – Shields recovery boiler tubes from ash erosion and chemical attack Conclusion The Half Round Straight Tube Shield by Ladhani Metal Corporation – manufacturer, supplier, and exporter – provides robust protection for straight tube sections in boilers, heat exchangers, and process heaters. With a range of alloy options and custom-fit configurations, these shields enhance the durability and efficiency of heat transfer systems operating in corrosive, abrasive, or high-thermal-stress environments. For technical guidance, size customization, or pricing, contact Ladhani Metal Corporation.

Send Message
product image
Titanium Sheet

Product name:Titanium sheet metal Unit price:$14-$36.9/kg Material: Titanium grade 1 grade 2 grade 3 grade 4 Grade 5 (Ti6al4v),grade 7,grade 12 etc. Standard: ASTM/ASME B265 AMS 4911 ASTM F136 ASTM F67 etc. Demension: Thickness*1000*2000mm Thickness*3000*6000mm (Standard size); Thickness: 0.5mm; 0.8mm; 1.0mm; 1.2mm; 1.5mm; 2.0mm; 3.0mm; 4.0mm ......40mm etc br>Technique : Rolled Status: Annealed(M) Titanium has many obviously superior characteristics: small density (4.5kg/m3), high melting point (1660℃), strong corrosion resistance, high specific strength, good plasticity, but also through alloying and heat treatment methods to produce a variety of alloys with high mechanical properties, is an ideal aerospace engineering structural materials. Titanium sheet metal are commonly used in today's manufacturing industry, and the most commonly used grades are 2 and 5. Grade 2 titanium Grade 2 is commercial pure titanium used in most chemical processing plants and can be cold formed. Ultimate tensile strength of grade 2 plates and sheets up to 40,000 psi and above. Grade 5 titanium Class 5 is an aerospace class that does not allow cold molding and is therefore used more often when molding is not required. Grade 5 aerospace alloys have ultimate tensile strength of 120,000 psi and above. Usually the purpose of using Titanium sheet metal is to really approximate the final size of the part being manufactured. The material is processed to the nearest size of the required parts and the grain structure of the finished product is more uniform. Titanium plates are often used as insulation because titanium prevents heat from being transferred to the rest of the assembly. The titanium plate and titanium plate are bulletproof and provide good protection for the driver during the race. Application example: in addition to the use of industrial pure titanium manufacturing parts, a large number of titanium alloy is used. It is increasingly widely used in aerospace, aerospace, chemical, shipbuilding and other industrial sectors, manufacturing gas turbine components, the production of prosthetic devices and other biological materials

Send Message

Still searching for
application example?