Kolkata
+919029362692

'anodes'

Items tagged with 'anodes'

product image
Titanium Anodising Jigs

Product Name: Titanium Rack Material: Gr1, Gr2 Application: Anodizing Size: Customized Surface: Bright Generally, titanium jigs/racks have a long life because they do not consume chemicals and they do not need to be stripped after anodizing. They can specially design all kinds of fingers, clips and other contact points and be sized to maximize the volume of parts. Titanium jigs can also be designed to keep parts superior to rinsing and drainage, and protect parts from damage during travel. Therefore, a well-designed shelf is an effective way to improve the processing capacity (i.e. better quality). The finishing cost is reduced by increasing the utilization rate of the tank and avoiding the stripping requirements. When designing the fast shelf and disassembly tools, the load is increased to the greatest extent, so as to produce faster turnover time. The problem is that these titanium racks for anodizing can be very expensive considering the cost of materials and the special cutting and welding processes used to build them. Generally speaking, the recovery period of titanium stent is about [500 uses]. The delivery time of titanium alloy rack is usually about 8 weeks after the design is completed, so the use of titanium rack also needs some planning. The design of titanium anodising jigs should consider the shape of the part, the nature of the plating solution, the production method, the distance and position between the anodes, and the number of workpieces, to ensure that the power lines of the parts in the bath are evenly distributed, the thickness of the coating is uniform, and the process requirements are met. The function of titanium anodising jigs is to suspend or fix various parts to connect them with the cathode. During anodizing and electroplating, they are connected with the anode to conduct current to the parts to achieve plating or other processing purposes. Titanium anodising jigs are of great significance for improving product quality, reducing manufacturing costs, reducing labor intensity and safe operation.

Send Message
product image

Aerospace Titanium Specifications (AMS 49) AMS 4900 Plate, Sheet & Strip – Annealed –55,000 psi Yield AMS 4901 Sheet, Strip & Plate – Annealed – 70,000 psi Yield AMS 4902 Plate, Sheet & Strip – Annealed – 40,000 psi Yield AMS 4905 Plate, Damage Tolerant Grade – 6AI 4V, Beta Annealed AMS 4907 Plate, Sheet & Strip – 6Al-4V, Extra Low Interstitial, Annealed AMS 4908 Sheet & Strip – 8Mn Annealed - 110,000 psi Yield AMS 4909 Plate, Sheet & Strip – 5Al-2.5Sn, Extra Low Interstitial, Annealed AMS 4910 Plate, Sheet & Strip – 5Al-2.5Sn, Annealed AMS 4911 Sheet, Strip & Plate – 6Al-4V, Annealed AMS 4914 Sheet & Strip – 15V 3Cr 3Sn #AI – Solution Heat Treated AMS 4915 Plate, Sheet & Strip – 8Al-1Mo-1V – Single Annealed AMS 4916 Plate, Sheet & Strip – 8Al-1Mo-1V – Duplex Annealed AMS 4917 Plate, Sheet & Strip – 13.5V 11Cr 3Al – Solution Treated AMS 4918 Plate, Sheet & Strip –6Al-6V-2Sn – Annealed AMS 4919 Sheet, Strip & Plate – 6Al 2Sn 4Zr-2Mo – Annealed AMS 4920 Forgings – 6Al-4V – Alpha Beta or Beta Processed – Annealed AMS 4921 Bars, Forgings & Rings – Annealed – 70,000 psi Yield AMS 4924 Bars, Forgings & Rings – 5Al-2.5Sn – Extra Low Interstitial, Annealed – 90,000 psi Yield AMS 4926 Bars & Rings – 5Al-2.5Sn – Annealed – 110,000 psi Yield AMS 4928 Bars & Forgings – 6Al-4V – Annealed – 120,000 psi Yield AMS 4930 Bars, Forgings & Rings – 6Al-4V – Extra Low Interstitial, Annealed AMS 4931 Bars, Forgings & Rings – 6Al-4V ELI, Duplex Annealed, Fractured Toughness AMS 4933 Extrusions & Flash Welded Rings – 8AI 1Mo 1V – Solution Heat Treated & Stabilized AMS 4934 Extrusions & Flash Welded Rings - 6Al-4V – Solution Heat Treated & Aged AMS 4935 Extrusions & Flash Welded Rings – 6Al-4V – Annealed, Beta Processed AMS 4936 Extrusions & Flash Welded Rings – 6Al-4V – Beta Processed AMS 4941 Tubing, Welded – Annealed – 40,000psi Yield AMS 4942 Tubing, Seamless – Annealed – 40,000 psi Yield AMS 4943 Tubing, Seamless – Annealed – 3.0Al 2.5V AMS 4944 Tubing, Seamless – hydraulic – 3.0Al 2.5V – Cold Worked, Stress Relieved AMS 4951 Wire, Welding – Commercially Pure AMS 4953 Wire, Welding – 5Al 2.5Sn AMS 4954 Wire, Welding –6Al 4V AMS 4955 Wire, Welding – 8Al 1Mo 1V AMS 4956 Wire, Welding – 6Al 4V – Extra Low Interstitial, Environment Controlled AMS 4957 Bars & Wire, 3Al-8V-6Cr-4Mo-4Zr, Consumable Electrode Melted, Cold Drawn AMS 4958 Bars & Rod – 3Al-8V-6Cr-4Mo-4Zr, Consumable Electrode Melted, Solution Heat Treated & Centerless Ground AMS 4959 Wire – 13.5V 11Cr 3Al – Spring Temper AMS 4965 Bars, Forgings & Rings – 6Al-4V – Solution & Precipitation Heat Treated AMS 4966 Forgings – 5Al-2.5Sn – Annealed – 110,000 psi Yield AMS 4967 Rings & Forgings – 6Al-4V – Annealed, Heat Treatable AMS 4970 Bars & Forgings – 7Al 4Mo – Solution & Precipitation Heat Treated AMS 4971 Bars, Forgings & Rings – 6Al-6V-2Sn – Annealed, Heat Treatable AMS 4972 Bars & Rings – 8Al-1Mo-1V – Solution Heat Treated & Stabilize AMS 4973 Forgings – 8Al 1Mo 1V - Solution Heat Treated & Stabilized AMS 4974 Bars & Forgings – 11Sn 5.0Zr 2.3Al 1.0Mo 0.21Si - Solution & Precipitation Heat Treated AMS 4975 Bars & Rings – 6Al-2Sn-4Zr-2Mo - Solution & Precipitation Heat Treated AMS 4976 Forgings - 6Al-2Sn-4Zr-2Mo - Solution & Precipitation Heat Treated AMS 4979 Bars, Forgings & Rings – 6Al-6V-2Sn - Solution & Precipitation Heat Treated AMS 4981 Bars & Forgings 6Al 2Sn 4Zr 6Mo - Solution & Precipitation Heat Treated AMS 4983 Forgings – 10V 2Fe 3Al – Solution Heat Treated & Aged Military Titanium Specifications Mil-T-9046H Titanium & Titanium Alloy Sheet, Strip & Plate Type I – Commercially Pure: Composition A – CP GR 2 (40 KSI) Composition B – CP GR 4 (70 KSI) Composition C – CP GR 3 (55 KSI) Type II – Alpha Alloys: Composition A - 5Al-2.5Sn Composition B - 5Al-2.5Sn ELI Composition F – 8Al-1Mo-1V Composition G – 6Al-2Cb-1Ta-.8Mo Type III – Alpha-Beta Alloys: Composition C – 6Al-4V Composition D – 6Al-4V ELI Composition E – 6Al-6V-2Sn Composition G – 6Al-4Sn-4Zr-2Mo Composition H – 6Al-4V SPL Type IV – Beta Alloys Composition A – 13Al-11Cr-3Al Composition B – 11.5Mo-6Zr-4.5Sn (Beta III) Composition C – 3Al-8V-6Cr-4Mo-4Zr (Beta C™)(10) MIL-T-9046J Titanium & Titanium Alloy Sheet , Strip & Plate Commercially Pure (CP CP-1 – Grade 4 (70 KSI) CP-2 – Grade 3 (55 KSI) CP-3 – Grade 2 (40 KSI) CP-4 – Grade 1 (25 KSI) Alpha Alloys (A) A-1 – 5Al-2.5Sn A-2 – 5Al-2.5Sn (ELI) A-3 – 6Al-2Cb-1Ta-.8Mo A-4 – 8Al-1Mo-1V Alpha-Beta Alloys (AB) AB-1 – 6Al-4V AB-2 – 6Al-4V (ELI) AB-3 – 6Al-6V-2Sn AB-4 – 6Al-2Sn-4Zr-2Mo AB-5 – 3Al-2.5V AB-6 – 8Mn Beta Alloys (B) B-1 – 13V-11Cr-3Al B-2 – 11.5Mo-6Zr-4.5Sn (Beta III) B-3 – 3Al-8V-6Cr-$Mo-$zr (Beta C™)(10) B-4 – 8Mo-8V-2Fe-3Al MIL-T-9047E Titanium & Titanium Alloy Bars & Reforging Stock Alpha Alloys Composition 1 – Unalloyed Composition 2 – 5Al-2.5Sn Composition 3 – 5Al-2.5Sn ELI Composition 5 – 5Al-1Mo-1V Alpha-Beta Alloys Composition 6 – 6Al-4V Composition 7 – 6Al-4V ELI Composition 8 - 6Al-6V-2Sn Composition 9 – 7Al-4Mo Composition 10 – 11Sn-5Zr-2Al-1Mo Composition 11 – 6Al-2Sn-4Zr-2Mo Composition 14 – 6Al-2Sn-4Zr-6Mo Beta Alloys Composition 12 – 13V-11Cr-3Al Composition 13 – 11.5Mo-6Zr-4.5Sn (Beta III) MIL-T-9047G Titanium & Titanium Alloy Bars & Reforging Stock, Aircraft Quality Commercially Pure TI-CP-70 (Grade 4) Alpha Alloys Ti – 5Al-2.5Sn Ti – 5Al-2.5Sn (ELI) 6Al-2Cb-1Ta-.8Mo 8Al-1Mo-1V Alpha-Beta Alloys Ti – 3Al-2.5V Ti – 6Al-4V Ti – 6Al-4V (ELI) Ti – 6Al-6V-2Sn Ti – 6Al-2Sn-4Zr-2Mo Ti – 6Al-2Sn-4Zr-6Mo Ti –7Al-4Mo Beta Alloys Ti – 8Mo-8V-2Fe-3Al Ti – 11.5Mo-6Zr-4.5Sn (Beta III) Ti – 3Al-8V-6Cr-4Mo-4Zr (Beta C™)(10) Ti – 13V-11Cr-3Al Imperial and Metric sizes available upon request.

Send Message
product image
Titanium Anodising Jigs

Product Name: Titanium Rack Material: Gr1, Gr2 Application: Anodizing Size: Customized Surface: Bright Generally, titanium jigs/racks have a long life because they do not consume chemicals and they do not need to be stripped after anodizing. They can specially design all kinds of fingers, clips and other contact points and be sized to maximize the volume of parts. Titanium jigs can also be designed to keep parts superior to rinsing and drainage, and protect parts from damage during travel. Therefore, a well-designed shelf is an effective way to improve the processing capacity (i.e. better quality). The finishing cost is reduced by increasing the utilization rate of the tank and avoiding the stripping requirements. When designing the fast shelf and disassembly tools, the load is increased to the greatest extent, so as to produce faster turnover time. The problem is that these titanium racks for anodizing can be very expensive considering the cost of materials and the special cutting and welding processes used to build them. Generally speaking, the recovery period of titanium stent is about [500 uses]. The delivery time of titanium alloy rack is usually about 8 weeks after the design is completed, so the use of titanium rack also needs some planning. The design of titanium anodising jigs should consider the shape of the part, the nature of the plating solution, the production method, the distance and position between the anodes, and the number of workpieces, to ensure that the power lines of the parts in the bath are evenly distributed, the thickness of the coating is uniform, and the process requirements are met. The function of titanium anodising jigs is to suspend or fix various parts to connect them with the cathode. During anodizing and electroplating, they are connected with the anode to conduct current to the parts to achieve plating or other processing purposes. Titanium anodising jigs are of great significance for improving product quality, reducing manufacturing costs, reducing labor intensity and safe operation.

Send Message
product image
Titanium Anodising Jigs

Product Name: Titanium Rack Material: Gr1, Gr2 Application: Anodizing Size: Customized Surface: Bright Generally, titanium jigs/racks have a long life because they do not consume chemicals and they do not need to be stripped after anodizing. They can specially design all kinds of fingers, clips and other contact points and be sized to maximize the volume of parts. Titanium jigs can also be designed to keep parts superior to rinsing and drainage, and protect parts from damage during travel. Therefore, a well-designed shelf is an effective way to improve the processing capacity (i.e. better quality). The finishing cost is reduced by increasing the utilization rate of the tank and avoiding the stripping requirements. When designing the fast shelf and disassembly tools, the load is increased to the greatest extent, so as to produce faster turnover time. The problem is that these titanium racks for anodizing can be very expensive considering the cost of materials and the special cutting and welding processes used to build them. Generally speaking, the recovery period of titanium stent is about [500 uses]. The delivery time of titanium alloy rack is usually about 8 weeks after the design is completed, so the use of titanium rack also needs some planning. The design of titanium anodising jigs should consider the shape of the part, the nature of the plating solution, the production method, the distance and position between the anodes, and the number of workpieces, to ensure that the power lines of the parts in the bath are evenly distributed, the thickness of the coating is uniform, and the process requirements are met. The function of titanium anodising jigs is to suspend or fix various parts to connect them with the cathode. During anodizing and electroplating, they are connected with the anode to conduct current to the parts to achieve plating or other processing purposes. Titanium anodising jigs are of great significance for improving product quality, reducing manufacturing costs, reducing labor intensity and safe operation.

Send Message

Still searching for
anodes?