Chennai
+919029362692

'sheets'

Items tagged with 'sheets'

product image
Block

A tungsten alloy block is a solid piece of tungsten metal alloy, typically made by combining tungsten with other metals like nickel, iron, or copper to enhance its properties. These blocks are known for their exceptional density, strength, and high resistance to heat, corrosion, and wear. Due to these characteristics, tungsten alloy blocks are widely used in industries that require durable materials capable of withstanding extreme conditions. Tungsten alloy blocks are commonly used in aerospace, defense, medical, and manufacturing applications. They are often used for producing high-performance components such as counterweights, radiation shielding, military projectiles, and components for heavy machinery. The material's high density also makes it ideal for applications like ballast and vibration damping. Characteristics: High Density and Strength: Tungsten alloy blocks are notably dense, with densities ranging from 16 to 19 grams per cubic centimeter (g/cm³), making them among the heaviest materials available. This makes them ideal for applications requiring heavy, compact materials. High Melting Point: Tungsten has one of the highest melting points of any metal, around 3422°C (6192°F), which ensures that tungsten alloy blocks maintain their structural integrity even under extreme temperatures. This property makes them highly suitable for applications in aerospace and defense sectors where high heat resistance is critical. Excellent Wear and Corrosion Resistance: The tungsten alloy's resistance to wear, corrosion, and abrasion is enhanced by the alloying elements, especially when the blocks are used in harsh environments or for high-wear applications. This makes them ideal for parts exposed to friction or high-stress conditions. Machinability: While tungsten itself is quite hard and brittle, alloying it with materials like nickel and iron improves its machinability. Tungsten alloy blocks are typically produced in a variety of forms, including standard sizes and custom shapes, making them suitable for a range of industrial applications.

Send Message
product image
Titanium Clad Steel Tube Sheets

Porduct name : Titanium Clad Steel Tube Sheets Material: Gr2 Titanium +steel,Gr2 Titanium+stainless steel etc. Size &Standard: As per client drawing Production Method: Forging,annealing and machining Advantage: Excellent corrosion resistance ability Packing: Plywood case Application: Heat Exchanger, chemical equipment, Pressure Vessel, filter devices, etc. Titanium Clad Steel Tube Sheets The Titanium tube plate is drilling the pipes holes on the circular. Titanium steel Clad plate to be slightly larger than the outer diameter of the tube. It is widely used in Heat Exchanger area,play the role of fix pipe and a sealing medium in the heat exchanger. Standards: ASTM B898, ASME SB898, etc. Base materials: Carbon steel: Q235, 516GR-70, A216, A210-C, Stainless steel: SUS304, SUS316, SUS410, etc. duplex stainless steel: 2507, S32750, F53, etc. Aluminum: L, Ly ,LF, etc. Nickel: N2, N4, N6, etc. Copper: T1, T2, T3, T4, etc. Zirconium: R60702 Clad materials : Titanium GR1, GR2, GR7, GR12, GR16, GR17, etc. Sizes(clad/base): (0.5-20)/(0.5-200) x W(max W 6000) x L(max L 8000) Applications: power station chimney, vacuum salt making facility, pressure vessel, petrochemical, chemical, crystallizer, evaporator, heat exchanger, TDA tower, condenser, reactor, etc. We can supply: Titanium clad steel plates Titanium Clad Titanium clad tube sheet Titanium tube sheet Titanium clad steel tube sheet

Send Message
product image
Monel Flanges

DIN 2576 Monel Flanges PN 10 are high-integrity, slip-on flanges manufactured from corrosion-resistant nickel-copper alloys, specifically designed for demanding low to medium-pressure applications. Compliant with the DIN 2576 standard, these flanges provide exceptional resistance to seawater, acids, alkalis, and corrosive chemicals, making them ideal for highly corrosive industrial environments. The slip-on design allows the flange to be positioned over the pipe and welded in place, ensuring precise alignment and long-term mechanical stability. Ladhani Metal Corporation is a trusted manufacturer and international supplier of Monel flanges, producing components that meet rigorous dimensional, metallurgical, and quality standards. DIN 2576 Monel flanges are widely used in marine, chemical, and oil and gas industries, where material durability and corrosion resistance are critical. Pressure Rating: • PN 10 (10 bar / 145 psi): Designed for systems requiring stable operation under moderate pressures in fluid and gas transport environments. Flange Types: • Slip-On Flanges Facilitate easy assembly by slipping over the pipe and welding on both sides to ensure a leak-proof and secure joint. • Flat Face (FF) Flanges Designed for use with flat gaskets and mating surfaces, offering even pressure distribution and sealing performance, particularly with brittle or non-metallic materials. Monel Grades and Composition: Monel 400 (UNS N04400) Composition: • Nickel (Ni): ≥ 63.0% • Copper (Cu): 28.0 – 34.0% • Iron (Fe), Manganese (Mn), Silicon (Si), Carbon (C): Trace amounts Applications: Monel 400 is well-known for its outstanding resistance to seawater, hydrofluoric acid, sulfuric acid, and alkalis. It is widely used in marine engineering, chemical processing, and heat exchangers. Monel K500 (UNS N05500) Composition: • Nickel (Ni): ≥ 63.0% • Copper (Cu): ~30.0% • Aluminum (Al): 2.3 – 3.15% • Titanium (Ti): 0.35 – 0.85% Applications: Monel K500 offers the same corrosion resistance as Monel 400 but with significantly higher strength and hardness due to age-hardening. It is ideal for high-stress applications such as pump shafts, valve components, and marine fasteners. Applications of DIN 2576 Monel Flanges: • Marine and Offshore Engineering Ideal for seawater exposure, ballast systems, and structural applications in shipbuilding and offshore platforms. • Chemical and Petrochemical Processing Used in piping systems exposed to strong acids, caustics, and other corrosive agents. • Oil and Gas Industry Suitable for sour gas (H₂S) environments, offshore drilling equipment, and refining systems. • Heat Exchangers and Condensers Monel's thermal conductivity and corrosion resistance make it suitable for tube sheets and connecting flanges. • Power Generation Applied in cooling systems, boiler feedwater lines, and other aggressive service environments. • Aerospace and Defense Used in fuel and hydraulic systems where resistance to corrosion and stress cracking is required. Key Features: • Manufactured according to DIN 2576 specification • PN 10 pressure rating for low to medium-pressure fluid systems • Exceptional resistance to seawater, acids, alkalis, and chlorides • Available in Monel 400 and Monel K500 grades • Slip-on design enables easy installation and welding • Flat face versions for compatibility with flat gaskets and brittle materials • Excellent mechanical properties and corrosion resistance • Custom dimensions, finishes, and face types available upon request Conclusion: DIN 2576 Monel Flanges PN 10 from Ladhani Metal Corporation deliver high corrosion resistance and mechanical strength for aggressive environments where conventional materials fail. With availability in Monel 400 and K500 grades, these flanges are suitable for marine, oil & gas, and chemical applications. For technical support, project consultation, or custom orders, contact Ladhani Metal Corporation today.

Send Message
product image
Inconel Flanges

DIN 2576 Inconel Flanges PN 10 are high-performance, slip-on flanges engineered from nickel-chromium-based superalloys designed for use in corrosive and high-temperature industrial environments. Manufactured to the DIN 2576 standard, these flanges are well-suited for low to medium-pressure applications requiring exceptional resistance to oxidation, thermal stress, and chemical attack. The slip-on design allows the flange to slide over the pipe and be welded in place, providing accurate alignment and strong mechanical stability. Ladhani Metal Corporation is a trusted manufacturer and exporter of Inconel flanges, offering precision-engineered components that meet international quality and dimensional standards. DIN 2576 Inconel flanges are ideal for challenging applications in aerospace, chemical processing, power generation, and marine systems. Pressure Rating: • PN 10 (10 bar / 145 psi): Suitable for low to moderate pressure operations, delivering reliable sealing and long-term performance in fluid and gas transport systems. Flange Types: • Slip-On Flanges Designed to fit over the pipe and be welded on both sides, offering simplified installation and secure mechanical performance. • Flat Face (FF) Flanges Used with flat gaskets and mating surfaces, providing uniform gasket compression and sealing integrity, especially with brittle or non-metallic components. Inconel Grades and Composition: Inconel 600 (UNS N06600) Composition: • Nickel (Ni): ≥ 72.0% • Chromium (Cr): 14.0 – 17.0% • Iron (Fe): 6.0 – 10.0% • Trace elements: Manganese, Silicon, Copper Applications: Inconel 600 offers excellent resistance to high-temperature oxidation, chloride-ion stress corrosion cracking, and acidic environments. Commonly used in furnace components, chemical process heaters, and nuclear reactors. Inconel 625 (UNS N06625) Composition: • Nickel (Ni): ≥ 58.0% • Chromium (Cr): 20.0 – 23.0% • Molybdenum (Mo): 8.0 – 10.0% • Niobium (Nb) + Tantalum (Ta): 3.15 – 4.15% Applications: Inconel 625 is known for its outstanding corrosion resistance in harsh conditions, including seawater, acid baths, and high-pressure environments. It is used extensively in marine hardware, offshore oil and gas systems, and aerospace exhaust systems. Inconel 718 (UNS N07718) Composition: • Nickel (Ni): 50.0 – 55.0% • Chromium (Cr): 17.0 – 21.0% • Iron (Fe): Balance • Niobium (Nb): 4.75 – 5.5% • Molybdenum (Mo): 2.8 – 3.3% • Titanium (Ti) + Aluminum (Al): ~1% Applications: Inconel 718 is a high-strength, precipitation-hardenable alloy with excellent corrosion and oxidation resistance. It performs well in cryogenic to high-temperature environments and is widely used in jet engines, high-temperature bolting, power generation turbines, and downhole oil and gas equipment. Applications of DIN 2576 Inconel Flanges: • Chemical and Petrochemical Processing Ideal for use in systems handling strong acids, solvents, and oxidizing agents at elevated temperatures. • Power Generation Used in heat exchangers, boiler systems, and turbine piping exposed to thermal cycling and steam corrosion. • Marine and Offshore Industries Excellent choice for seawater-cooled systems, marine risers, and subsea components due to its resistance to pitting and crevice corrosion. • Aerospace and Defense Applied in engine exhausts, combustion chambers, and other high-heat zones requiring structural integrity under extreme conditions. • Nuclear and High-Risk Industrial Systems Reliable in applications with radioactive or caustic media, where corrosion and temperature resistance are critical. Key Features: • Manufactured to DIN 2576 standard • PN 10 pressure rating suitable for moderate-pressure piping systems • Outstanding resistance to corrosion, oxidation, and high temperatures • Available in Inconel 600, 625, and other grades upon request • Slip-on design for ease of welding and proper pipe alignment • Flat face options for compatibility with a variety of gaskets and joint materials • Ideal for harsh chemical, thermal, and marine environments • Custom sizes, face types, and finishes available as per project requirements Conclusion: DIN 2576 Inconel Flanges PN 10 from Ladhani Metal Corporation are engineered for the toughest industrial environments, delivering performance, durability, and corrosion resistance where stainless steel or other materials may fail. For material selection support, technical data sheets, or customized orders, contact Ladhani Metal Corporation today.

Send Message
product image
Titanium Coupling & Nipple

Titanium couplings and nipples are essential components used in piping systems to connect, extend, or adapt pipes. Renowned for their outstanding strength, corrosion resistance, and durability, titanium fittings are widely utilized in high-performance industries such as aerospace, marine, chemical processing, and power generation. The unique properties of titanium ensure that these fittings offer long-lasting, reliable service in demanding applications. Titanium Coupling A titanium coupling is a pipe fitting used to join two pipes or tubes together. They are designed to connect the same or different diameter pipes, allowing for a seamless, leak-proof connection. Titanium couplings offer exceptional resistance to corrosion, high strength, and are lightweight, making them ideal for use in environments exposed to harsh conditions like seawater, chemical exposure, or high temperatures. Titanium Nipple A titanium nipple is a short, cylindrical pipe section that is typically threaded on both ends to allow for easy connection of pipes. It serves as an extension or connection between two other fittings or pipes, offering a secure and stable joint. Like other titanium components, titanium nipples offer the advantage of corrosion resistance, strength, and durability, making them suitable for challenging applications across various industries. Titanium Couplings and Nipples – Mechanical Specifications Material: Grade: Typically Grade 2 (commercially pure titanium) or Grade 5 (Ti-6Al-4V, titanium alloy) depending on the application requirements. Standard: ASTM B337, ASTM B348, or equivalent. Tensile Strength: Grade 2 (Pure Titanium): 35,000 – 50,000 psi (240 – 345 MPa). Grade 5 (Ti-6Al-4V): 130,000 psi (900 MPa). Yield Strength: Grade 2 (Pure Titanium): 20,000 – 40,000 psi (138 – 276 MPa). Grade 5 (Ti-6Al-4V): 120,000 psi (828 MPa). Elongation: Grade 2 (Pure Titanium): 20-25%. Grade 5 (Ti-6Al-4V): 10-15%. Hardness: Grade 2 (Pure Titanium): 170-230 HV (Vickers hardness). Grade 5 (Ti-6Al-4V): 300-400 HV (Vickers hardness). Types of Titanium Couplings: Threaded Couplings: Used to connect pipes with matching threads, providing a secure and easy-to-assemble connection. Common for low-pressure systems. Socket Weld Couplings: Welded into the socket of connecting pipes, ideal for high-pressure applications, offering a permanent, strong connection. Butt Weld Couplings: Have flared ends for welding to pipes, commonly used in high-pressure systems for a smooth and durable connection. Flanged Couplings: Connect pipes via flanges and bolts with a gasket for a high-pressure, leak-proof connection. Suitable for large-scale industrial applications. Types of Titanium Nipples: Threaded Nipples: Cylindrical pipes with male threads at both ends, used to extend or connect pipes. Easy to install and remove. Socket Weld Nipples: One end fits into a socket for welding, designed for high-pressure systems, offering a permanent and robust connection. Butt Weld Nipples: Used to connect pipes by welding, offering a seamless and high-strength connection for high-pressure systems. Reducing Nipples: Connect pipes of different diameters, allowing for transitions between pipe sizes in fluid systems. Extension Nipples: Extend the length of a pipeline, used in systems requiring adjusted pipe alignment or spacing. Hex Nipples: Have a hexagonal shape for easy tightening and installation without tools, commonly used in fluid and gas systems.

Send Message
product image
titanium tank and vessel

At Ladhani Metal Corporation, we rely on advanced, durable, and highly resistant Titanium Tanks and Vessels in our state-of-the-art gold and silver refining processes to meet the highest industry standards of efficiency and quality. Titanium, known for its exceptional strength, lightweight nature, and superior corrosion resistance, is the perfect material for handling the challenging and chemically aggressive processes involved in precious metal refining. Titanium Tanks and Vessels are critical components in ensuring the refined metals remain pure and free from contaminants, which is a paramount concern in the production of high-quality gold and silver. These tanks and vessels are custom-designed to withstand the demanding conditions of refining, where harsh chemicals, high temperatures, and reactive agents are frequently used. Key Features and Advantages of Titanium Tanks and Vessels: Unmatched Corrosion Resistance: Titanium's resistance to corrosion in both oxidizing and reducing environments makes it ideal for gold and silver refining operations. High Strength and Durability: Titanium exhibits extraordinary strength even at high temperatures, allowing our refining plant to maintain operational efficiency without concerns about material failure. Precision and Purity Assurance: Titanium's non-reactive nature ensures that it does not introduce any impurities into the refining solution, which is critical when producing high-purity gold and silver. As precious metals are refined, any contaminant introduced through the process can significantly reduce the quality of the final product. Titanium's inert properties prevent such risks, allowing for the highest-quality output. Optimal Design for Efficient Operations: The Titanium Tanks and Vessels are designed with precision to optimize chemical mixing, temperature regulation, and overall process control, contributing to the efficiency of the refining operations. Their advanced engineering ensures minimal energy loss and greater process consistency, which translates to better yields and faster turnaround times in the refining cycle. Applications in Gold and Silver Refining: Electrolytic Refining: Titanium vessels are used to hold the electrolyte solutions during electrorefining processes, which are crucial for separating pure gold and silver from impurities. The non-reactive properties of titanium ensure that the refining chemicals do not degrade the container or contaminate the solution. Aqua Regia Processing: When gold is dissolved in aqua regia for further separation and purification, the highly corrosive nature of this acid mixture makes titanium an ideal material for containing the solution without causing any damage to the vessel. Conclusion: The Titanium Tanks and Vessels at Ladhani Metal Corporation are integral to the efficiency, safety, and success of our precious metal refining operations. By leveraging the unique properties of titanium, we ensure that our gold and silver refining processes produce the highest purity metals while maintaining cost-effectiveness, operational longevity, and minimal maintenance requirements. Our commitment to using the best materials in the industry translates to superior results and a refined product that meets the exacting standards of our clients.

Send Message
product image
block

A Molybdenum Block is a solid, rectangular or square piece of molybdenum metal, widely used in industrial and commercial applications that require exceptional heat resistance, strength, and durability. Molybdenum is a refractory metal known for its high melting point, corrosion resistance, and mechanical properties, making molybdenum blocks an ideal choice for use in extreme environments. Key Features of Molybdenum Blocks: o High Melting Point: Molybdenum has an exceptionally high melting point of around 2,623°C (4,753°F), allowing molybdenum blocks to perform effectively in high-temperature applications, such as furnace components, aerospace, and other industries where elevated temperatures are a concern. o Excellent Mechanical Strength: Molybdenum blocks possess excellent tensile strength, ensuring they maintain their shape and structural integrity even under heavy loads and mechanical stress. This makes them suitable for demanding environments where other materials may fail. o Corrosion and Oxidation Resistance: Molybdenum is highly resistant to oxidation and corrosion, even at elevated temperatures, which makes molybdenum blocks ideal for applications in chemically aggressive environments like chemical processing, heat exchangers, and reactors. o Thermal and Electrical Conductivity: Molybdenum has good thermal and electrical conductivity, which is particularly valuable in applications requiring efficient heat transfer or electrical performance, such as in electronics, electrical contacts, and semiconductors. o Workability: Although molybdenum is a relatively hard metal at room temperature, it can be machined and fabricated into precise shapes and sizes, including blocks, to meet specific requirements for industrial applications. Molybdenum blocks can be easily cut, milled, or ground to create custom shapes and finishes. o Ductility at High Temperatures: At elevated temperatures, molybdenum becomes more ductile, allowing it to be easily processed into complex shapes and designs when necessary. Common Applications: o Aerospace and Aviation: Molybdenum blocks are used in the manufacturing of aerospace components such as heat shields, turbine blades, and rocket nozzles due to their ability to withstand extreme heat and mechanical stress. o Chemical Processing: Molybdenum blocks are used in reactors, heat exchangers, and other equipment in the chemical and petrochemical industries. Their resistance to corrosion and high-temperature stability makes them suitable for handling aggressive chemicals and high-pressure conditions. o Electronics and Electrical Engineering: Molybdenum blocks are employed in electronics, such as in the production of filaments, cathodes, and components for vacuum tubes. Their thermal and electrical conductivity makes them ideal for these applications. o Metallurgy: Molybdenum blocks are commonly used in the manufacturing of specialty steel alloys, improving the strength and heat resistance of steel products. They are also used in producing molds, dies, and other metalworking tools. o Energy Sector: Molybdenum blocks are used in the energy industry, particularly in nuclear reactors, where their resistance to radiation and high temperatures is critical.

Send Message
product image
sheet/plates

Pure Tungsten Sheets/Plates are flat, solid pieces of pure tungsten metal, typically produced in various thicknesses and sizes to meet specific industrial needs. Tungsten, with its exceptional properties, is highly valued in industries where extreme conditions of temperature, pressure, or corrosion resistance are prevalent. Key Characteristics of Pure Tungsten Sheets/Plates: Material Composition: 99.95% Pure Tungsten (W): These sheets or plates are composed entirely of tungsten, with minimal or no impurities, ensuring the full range of tungsten's beneficial properties. High Density:Tungsten has a very high density of around 19.25 g/cm³, making it one of the heaviest metals. This density is beneficial for applications requiring mass and weight in compact forms. Extremely High Melting Point:With a melting point of 3,422°C (6,192°F), tungsten is the highest-melting metal, making it ideal for applications in extreme temperatures such as aerospace and high-temperature manufacturing. Strength and Durability:Pure tungsten is incredibly strong and durable, with tensile strength that can reach up to 1510 MPa. It is highly resistant to wear, deformation, and damage under stress, even in extreme conditions. Corrosion and Oxidation Resistance:Tungsten exhibits excellent resistance to corrosion, oxidation, and other forms of environmental degradation, even at high temperatures, which makes it ideal for long-lasting, reliable use in harsh conditions. Applications of Pure Tungsten Sheets/Plates: Aerospace and Defense: Tungsten plates are used in aerospace components such as rocket nozzles, satellite shielding, and spacecraft parts, due to their ability to withstand extreme heat and pressure.Armor-piercing projectiles and military-grade materials also benefit from tungsten's high density and strength. High-Temperature Applications: Tungsten sheets are commonly used in high-temperature furnaces and other industrial heating equipment where temperatures may exceed normal metal capabilities, such as in hot zones of steel manufacturing or semiconductor production.

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These rods are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defense, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message

Still searching for
sheets?