Chennai
+919029362692

'scientific applications due'

Items tagged with 'scientific applications due'

product image

As a distributor of titanium plate we stock widths from 36" to 72, lengths up to 240" and thicknesses up to 7". Available grades: CP Grade 1 CP Grade 2 Grade 7 Grade 19 Grade 5 (6Al-4V) Grade 6 (5Al-2.5Sn) Grade 6Al-2Sn-4Zr-2Mo (6-2-4-2) Grade 6Al-4V ELI (Formerly Grade 23) Grade 6Al-6V-2Sn (6-62) Grade 8Al-1Mo-1V (8-1-1) Grade 9 (3Al-2.5V) Titanium plate grade bellow Ti CP Grade 1 Ti CP Grade 2 TI CP GRADE 3 Lower Strength, softest, unalloyed Ti grade with highest ductility, cold formability, and impact tou ghness, with excellent resistance to mildly reducing to highly oxidixing media with or without chlorides and high weldability. Moderate strength unalloyed Ti with excellent weldability, cold formability, and fabricability; Excellent resistance to midly reducing to highly oxidizing media with or without chlorides. Approved for sour service use under the NACE MR-01-75 Standard Slightly stronger version of Ti CP Grade 2 with similar corrosion resistance with good weldability and reasonable cold formability/ductibility. Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Pipe/Tubing, Wire. Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe, Seamless Tubing, Wire, Foil Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe Ti Grade 16 Ti Grade 17 Ti Grade 26 Lower cost, leaner Pd version of Ti Grade 7 with equivalent physical/mechanical properties, and similar corrosion resistance. Tubing Welded Pipe. Lower cost, leaner Pd version of Ti. Grade 11 with equivalent physical, mechanical properties and fabricability (soft grade) and similar corrosion resistance. Tubing Welded Pipe. Lower cost, Ru-containin g alternative for Ti Grade 7 with equivalent physical/mechanical properties and fabricability and similar corrosion resistance. Tubing, welded pipe. Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe, Wire Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe, Wire Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe, Wire Ti Grade 18 Ti Grade 28 Ti Grade 6 Pd-enhanced version of Ti-3Al-2.5V with equivalent physical and mechanical properties and fabricability, offering elevated resistance to dilute reducing acids and crevice corrosion in hot halide (brine) media. Ru-enhanced version of Ti-3Al-2.5V with equivalent physical and mechanical properties and fabricability, offering elevated resistance to dilute reducing acids and crevice corrosion in hot halide (brine) media. Approved for sour service use under the NACE MR-01-75 Standard. Weldable, non-ageable, high-strength alloy offering good high temperature stability, strength, oxidation and creep resistance. Ingot/Bloom, Billet, Welded Pipe, Plate, Strip, Welded Tubing, Seamless Pipe Ingot/Bloom, Billet, Welded Pipe, Plate, Strip, Welded Tubing, Seamless Pipe, Wire Ingot/Bloom, Bar, Billet, Sheet Ti 6Al-4V [Ti-6-4] (Grade 5) Ti-6Al-4V ELI [Ti-6-4-ELI] (Grade 23) Ti-6Al-4V-0.1Ru (Grade 29) [Ti-6- 4-Ru] Heat treatable, high-strength, most commercially available Ti alloy ("workhorse" alloy for aerospace applications), for use up to 400C offerin g an excellent combination of hi gh strength, toughness, and ductility along with good weldability and fabricability. Extra low interstitial version of Ti-6Al-4V offerin g improved ductility and fracture toughness in air and saltwater environments, along with excellent toughness, strength, and ductility in cryogenic service as low as -255C. Typically used in a non-aged condition for maximum toughness. Extra low interstitial, Ru-containing version of Ti-6Al-4V offering improved fracture toughness in air, seawater, and brines, along with resistance to localized corrosion in sweet and sour acidic brines as high as 330 C. Approved for sour service use under the NACE MR-01-75 Standard. Ingot/Bloom, Bar, Billet, Plate, Sheet, Seamless Pipe/Tubing, Wire, Foil Ingot/Bloom, Bar, Billet, Plate, Sheet, Wire, Seamless Tubing, Foil Ingot/Bloom, Bar, Billet, Plate, Sheet, Seamless Pipe, Wire Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.15Si [Ti-6- 22-22] Ti-4.5V-3V-2Mo-2Fe [SP-700] Ti-5Al-4Cr-4Mo-2Sn-2Zr [Ti-17] Heat treatable, high strength forging alloy with good strength and creep resistance to temperature as high as 400 C. Heat treatable, high strength Ti alloy with strength and fracture toughness-to-strength properties superior to those of Ti-6Al-4V, with excellent superplastic formability and thermal stability. Heat treatable, high strength Ti alloy with superior strength and exceptional hot and superplastic formability compared to Ti-6Al4V, combined with good ductility and fatigue resistance. Ingot/Bloom, Bar, Billet, Plate, Sheet, Wire Ingot/Bloom, Bar, Billet, Plate, Sheet Ingot/Bloom, Bar, Billet Ti-3Al-8V-6Cr-4Zr-4Mo-0.05Pd [Ti Beta-C/Pd] (Grade 20) A Pd-containing version of the Ti-38644 alloy (Beta-C/Pd) possessing equivalent physical/mechanical properties, but with significantly enhanced resistance to stress and localized corrosion in high temperature brines. Ingot/Bloom, Bar, Billet, Seamless Pipe TI CP GRADE 4 TI GRADE 7 TI GRADE 11 Much Stronger, high interstitial version of Grades 2 and 3 Ti with reasonable weldability, and reduced ductility and cold-formability. Most resistant Ti alloy to corrosion in reducing acids and localized attack in hot halide media, with physical/mechanical properties equivalent to Grade 2 and excellent weldability/fabricability. Most resistant Ti alloy to corrosion in reducin g acids and localized attack in hot halide media, with physical, mechanical, formability properties equivalent to Gr.1 Ti (soft grade) and excellent weldability. Ingot, Bloom, Bar, Billet, Plate, Strip Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe, Wire Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe, Wire Ti Grade 27 Ti Grade 12 Ti Grade 9 Lower cost, Ru-containing alternative for Ti Grade 11 with equivalent physical/mechanical properties (soft grade) and fabricability and similar corrosion resistance Highly weldable and fabricable Ti alloy offering improved strength and pressure code design allowables, hot brine crevice corrosion, and reducing acid resistance compared to Ti Grade 1, 2, and 3. Approved for sour sergice use under the NACE MR-01-75 Standard. Medium strength, non-ageable Ti alloy offering highest strength and design allowables under the pressure vessel code, with good weldability and cold fabricability for mildly reducing to mildly oxidizing media. Ingot/Bloom, Bar, Billet, Plate, Strip, Welded Tubing/Pipe Ingot/Bloom, Billet, Welded Pipe, Plate, Strip, Welded Tubing, Seamless Pipe, Wire Ingot/Bloom, Billet, Welded Pipe, Plate, Strip, Welded Tubing, Foil, Seamless Pipe, Wire Ti 5Al-2.5Sn ELI [Ti-5-2.5 ELI] Ti-8Al-1Mo-1V [Ti-8-1-1] Ti-6Al-2Sn-4Zr-2Mo-0.1Si [Ti-6-2-4-2S] Extra low interstitial version of Ti5Al-2.5Sn exhibiting an excellent combination of toughness and stren gth at cryo genic temperatures; suited for cryogenic vessels for service as low as -255C. Highly creep-resistant, non-ageable, weldable, high-strength Ti alloy for use up to 455C; exhibiting the lowest density and highest modulus of all commercial Ti alloys. Weldable, high strength Ti alloy offering excellent strength, stability, and creep resistance to temperatures as high as 550C. Ingot/Bloom, Bar, Billet Ingot/Bloom, Bar, Billet, Sheet Ingot/Bloom, Bar, Billet, Sheet Ti-6Al-7Nb Ti-6Al-6V-2Sn [Ti-6-6-2] Ti-6Al-2Sn-4Zr-6Mo [Ti-6-2-4-6] High strength Ti alloy with good toughness and ductility, used primarily for medical implants stemming from its excellent biocompatibility. Heat treatable, high strength Ti alloy with higher strength and section hardenability than Ti-6Al-4V, but with lower toughness and ductility, and limited weldability. Can be used in mill annealed or in the aged (very high strength) condition. Heat-treatable, deep hardenable, very hi gh stren gth Ti alloy with improved strength to temperatures as hi gh as 450C, with limited weldability. Approved for sour service under the NACE MR-01-75 Standard. Ingot/Bloom, Bar, Billet, Wire Ingot/Bloom, Bar, Billet, Plate, Sheet Ingot/Bloom, Bar, Billet Ti-10V-2Fe-3Al [Ti-10-2-3] Ti-3Al-8V-6Cr-4Zr-4Mo [Ti Beta-C] (Grade 19) Ti-3Al-8V-6Cr-4Zr-4Mo [Ti Beta-C] (Grade 19) Heat treatable, deep section hardenable, very high strength Ti alloy with superior strength and creep resistance over Ti-6Al-4V to temperatures as high as 400 C and limited weldability. Heat treatable, deep hardenable, very high strength Ti alloy possesing superior fatigue and strength/toughness combinations, with exceptional hot-die forgeability, but limited weldability. A heat-treatable, deep section hardenable, very high strength Ti alloy possessing good toughness/strength properties, low elastic modulus and elevated resistance to stress and localized corrosion in high temperature sweet and sour brines. Approved for sour service under the NACE MR-0175 Standard Ingot/Bloom, Bar, Billet Ingot/Bloom, Bar, Billet, Seamless Pipe, Wire Ingot/Bloom, Bar, Billet, Seamless Pipe

Send Message
product image
bar/rod

A pure tungsten bar rod is a solid, cylindrical piece of tungsten metal, typically used in various high-performance industrial and scientific applications. Tungsten is renowned for its exceptional physical properties, which make it an ideal material for extreme conditions. Here's a more detailed description: Key Characteristics of a Pure Tungsten Bar Rod: Material Composition: 99.95% Tungsten (W): A pure tungsten rod is composed entirely of tungsten, without any alloys or significant impurities. This ensures the rod has the full range of tungsten's advantageous properties. Melting Point: Tungsten's melting point is extremely high at 3,422°C (6,192°F), which makes it ideal for high-temperature applications, such as aerospace and military uses. Strength and Durability: The tungsten rod is extremely strong and wear-resistant. It has a tensile strength of around 1510 MPa, making it suitable for heavy-duty, high-stress applications. Corrosion Resistance: Pure tungsten rods exhibit strong resistance to corrosion, oxidation, and other forms of environmental degradation, even at elevated temperatures. Uses of Pure Tungsten Bar Rods: Aerospace & Defense: Tungsten rods are used in applications like rocket nozzles, spacecraft components, and military hardware. Their high density and ability to withstand extreme temperatures make them valuable in these fields. Medical Applications: Tungsten rods are employed in radiation shielding and in medical imaging devices like X-ray machines, where their high density helps to absorb harmful radiation. Machining & Manufacturing: Tungsten rods are used as tools or as part of tooling systems for machining metals, particularly in high-speed or high-precision operations. Specialty Manufacturing: Tungsten rods are often used in the production of custom components that need to operate in harsh environments, such as semiconductor manufacturing or nuclear reactors.

Send Message
product image
block

A pure tungsten block is a solid, dense piece of tungsten metal, characterized by its high melting point, exceptional strength, and remarkable density. Tungsten (chemical symbol W), is a transition metal known for being one of the toughest and most heat-resistant elements, with a range of industrial and scientific applications due to its unique properties. Key Characteristics: · High Density: Tungsten has one of the highest densities of any metal, approximately 19.3 g/cm³. This means a pure tungsten block is very heavy for its size, making it useful for applications requiring high mass in compact forms. · High Melting Point: Tungsten has the highest melting point of any element, at 3,422°C (6,192°F). This allows pure tungsten blocks to withstand extremely high temperatures without losing their structural integrity. · Hardness and Strength: Tungsten is incredibly strong and hard, with a hardness rating of about 7.5 on the Mohs scale. This makes it resistant to wear, scratching, and other forms of mechanical stress. It is also known for its ability to retain strength at elevated temperatures. · Corrosion Resistance: Pure tungsten is highly resistant to oxidation and corrosion, even at high temperatures. It is not prone to rusting or tarnishing, making it ideal for use in harsh chemical environments. · Electrical and Thermal Conductivity: Tungsten has good electrical conductivity, though not as high as metals like copper or silver. Its high thermal conductivity also makes it ideal for dissipating heat in industrial and scientific applications. Applications: · Aerospace and Defense: Tungsten is used in various high-performance components like rocket nozzles, military armor-piercing projectiles, and heavy-duty aerospace parts. · Radiation Shielding: Tungsten's high density makes it an effective material for radiation shielding, particularly in X-ray machines, nuclear reactors, and medical equipment. · Heavy Machinery: Tungsten blocks are used in counterweights and ballast for cranes, aircraft, and other machinery due to their density. · Industrial Tools: Tungsten is used in the production of cutting tools, dies, and drills, especially in industries that require materials with high hardness and wear resistance.

Send Message
product image
Half Round Shield for Boiler Tube

Ladhani Metal Corporation offers SS 316L Half Round Tube Shields designed to protect boiler tubes in thermal power plants, HRSGs, WHRBs, and industrial steam systems. Boiler tubes face severe service conditions such as high-temperature flue gas erosion, oxidation, and soot blower impact, which significantly reduce operational life. Manufactured from low-carbon molybdenum-bearing austenitic stainless steel grade SS 316L, these shields provide excellent corrosion resistance, superior scaling resistance, and improved weldability by minimizing the risk of carbide precipitation during welding. Function of Boiler Tubes • Carry water or steam through heating sections of the boiler • Continuously exposed to high-temperature flue gases, ash, and corrosive particles • Require Half Round Tube Shields in high-erosion, corrosive, and soot blower zones Ladhani Metal Corporation manufactures, supplies, and exports SS 316L Half Round Tube Shields in various lengths, diameters, and thicknesses to cater to both domestic and international requirements. SS 316L Grade Chemical Composition – Austenitic Stainless Steel • Carbon (C): ≤ 0.03% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 16.00 – 18.00% • Nickel (Ni): 10.00 – 14.00% • Molybdenum (Mo): 2.00 – 3.00% • Iron (Fe): Balance Applications: Suitable for superheater and reheater tubes in power generation boilers, petrochemical heaters, HRSGs, and waste heat recovery boilers operating in corrosive and high-temperature conditions. Uses • Protects boiler tubes from erosion, oxidation, and flue gas corrosion • Shields tubes against soot blower impact and abrasive ash particles • Extends service life of superheater and reheater components in steam circuits • Applicable in WHRBs, HRSGs, utility boilers, and process steam plants Features • Superior corrosion resistance in oxidizing and chloride-rich atmospheres • Low carbon content reduces sensitization and enhances weldability • Excellent resistance to pitting and crevice corrosion due to molybdenum content • Precision-engineered for exact tube curvature and easy installation Applications • Power generation boilers – Long-lasting protection for reheater and superheater tubes • Waste heat recovery boilers – Reliable against particle erosion and scaling • Industrial steam plants – Performs well under fluctuating high-temperature cycles • Petrochemical and chemical heaters – Ensures durability in corrosive environments Conclusion The SS 316L Half Round Tube Shield for Boiler Tubes by Ladhani Metal Corporation provides long-term, corrosion-resistant protection under demanding boiler conditions. With enhanced weldability, excellent pitting resistance, and reliable high-temperature stability, these shields extend tube service life and reduce maintenance needs. Available in a wide range of export-ready specifications, they are trusted solutions for global power, petrochemical, and industrial sectors. For supply and technical inquiries, contact Ladhani Metal Corporation.

Send Message
product image
COLD ROLLED SHEET

Quality Standard Material No. Old designation DC01 DIN EN 10130 1.0330 ST 12-03 Cold-rolled flat steel DC01, according to the standards DIN EN 10130 and DIN EN 10152 Cold-rolled flat steel DC01 is a widely used material in the industrial sector, which is used for various applications in the cold forming process due to its excellent properties. The standards DIN EN 10130 and DIN EN 10152 are decisive for ensuring the quality and requirements of this material. DC01 according to the DIN EN 10130 standard The DIN EN 10130 standard defines the requirements for cold-rolled flat products made of unalloyed quality steels that are used in the cold forming process. Technical delivery conditions DIN EN 10130 specifies the technical delivery conditions for cold-rolled flat steel. These include the chemical composition, mechanical properties and surface quality. The standard ensures that the products supplied meet the required standards in order to guarantee workability and final quality. Chemical composition The chemical composition of the steel is decisive for its properties and is described in detail in DIN EN 10130. For DC01, the maximum carbon content is 0.12%, while the manganese and phosphorus content is also subject to specific limits. This composition ensures good cold formability and a high surface quality. Mechanical properties DC01 in accordance with DIN EN 10130 has specific mechanical properties that make it ideal for cold forming. These include a minimum tensile strength of 270-410 MPa and a minimum elongation of 28%. These properties allow the steel to be processed into complex shapes without cracking or breaking. Surface quality The surface quality is another aspect of DIN EN 10130. DC01 can be supplied in different surface finishes, such as smooth or matt. These variations allow adaptation to specific requirements of the end application, be it for decorative purposes or further coating processes. DC01+ZE according to the DIN EN 10152 standard The DIN EN 10152 standard extends the requirements of DIN EN 10130 to include specific conditions for electrolytically galvanized products. This standard is crucial for applications in which corrosion protection plays an important role. Technical delivery conditions DIN EN 10152 specifies the technical delivery conditions for electrolytically galvanized, cold-rolled flat products. In addition to the chemical composition and mechanical properties, these conditions also include the specific requirements for the zinc coating. Chemical composition and zinc coating The chemical composition of the base material DC01 generally remains unchanged, but an additional electrolytic zinc coating is applied. This coating is used for corrosion protection and varies in thickness depending on the specific requirements of the application. The standard provides detailed specifications for the thickness and uniformity of the zinc coating to ensure optimum protection. Mechanical properties Even with galvanized products, the mechanical properties of the base material are largely retained. The standard ensures that the cold formability and strength of the steel are not impaired despite the additional coating. Corrosion resistance and surface quality One of the main advantages of products manufactured in accordance with DIN EN 10152 is their improved corrosion resistance. Electrolytic galvanizing protects the steel from rust and thus increases the service life of the end product. The surface quality also plays a decisive role here and can be supplied in various finishes, such as smooth or textured. Conclusion Cold-rolled flat steel DC01, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC01 is a versatile material with high quality and durability. FOR EN 10130 DC01 CHEMICAL , MECHANICAL DATA SHEET KINDLY VISIT https://www.ladhanimetal.in/page/en-10130-2006-chemical-and-mechanical-composition/689c322d2e585e299cb43798 https://www.ladhanimetal.in/page/en-10130-cold-rolled-flat-sheet-plate-coil-data-sheet-equivalent-grade-and-chemical-and-mechanical-properties/68a45503fc14472bb274df32

Send Message
product image
COLD ROLLED SHEET

Quality Standard Material No. Old designation DC01 DIN EN 10130 1.0330 ST 12-03 Cold-rolled flat steel DC01, according to the standards DIN EN 10130 and DIN EN 10152 Cold-rolled flat steel DC01 is a widely used material in the industrial sector, which is used for various applications in the cold forming process due to its excellent properties. The standards DIN EN 10130 and DIN EN 10152 are decisive for ensuring the quality and requirements of this material. DC01 according to the DIN EN 10130 standard The DIN EN 10130 standard defines the requirements for cold-rolled flat products made of unalloyed quality steels that are used in the cold forming process. Technical delivery conditions DIN EN 10130 specifies the technical delivery conditions for cold-rolled flat steel. These include the chemical composition, mechanical properties and surface quality. The standard ensures that the products supplied meet the required standards in order to guarantee workability and final quality. Chemical composition The chemical composition of the steel is decisive for its properties and is described in detail in DIN EN 10130. For DC01, the maximum carbon content is 0.12%, while the manganese and phosphorus content is also subject to specific limits. This composition ensures good cold formability and a high surface quality. Mechanical properties DC01 in accordance with DIN EN 10130 has specific mechanical properties that make it ideal for cold forming. These include a minimum tensile strength of 270-410 MPa and a minimum elongation of 28%. These properties allow the steel to be processed into complex shapes without cracking or breaking. Surface quality The surface quality is another aspect of DIN EN 10130. DC01 can be supplied in different surface finishes, such as smooth or matt. These variations allow adaptation to specific requirements of the end application, be it for decorative purposes or further coating processes. DC01+ZE according to the DIN EN 10152 standard The DIN EN 10152 standard extends the requirements of DIN EN 10130 to include specific conditions for electrolytically galvanized products. This standard is crucial for applications in which corrosion protection plays an important role. Technical delivery conditions DIN EN 10152 specifies the technical delivery conditions for electrolytically galvanized, cold-rolled flat products. In addition to the chemical composition and mechanical properties, these conditions also include the specific requirements for the zinc coating. Chemical composition and zinc coating The chemical composition of the base material DC01 generally remains unchanged, but an additional electrolytic zinc coating is applied. This coating is used for corrosion protection and varies in thickness depending on the specific requirements of the application. The standard provides detailed specifications for the thickness and uniformity of the zinc coating to ensure optimum protection. Mechanical properties Even with galvanized products, the mechanical properties of the base material are largely retained. The standard ensures that the cold formability and strength of the steel are not impaired despite the additional coating. Corrosion resistance and surface quality One of the main advantages of products manufactured in accordance with DIN EN 10152 is their improved corrosion resistance. Electrolytic galvanizing protects the steel from rust and thus increases the service life of the end product. The surface quality also plays a decisive role here and can be supplied in various finishes, such as smooth or textured. Conclusion Cold-rolled flat steel DC01, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC01 is a versatile material with high quality and durability. FOR EN 10130 DC01 CHEMICAL , MECHANICAL DATA SHEET KINDLY VISIT https://www.ladhanimetal.in/page/en-10130-2006-chemical-and-mechanical-composition/689c322d2e585e299cb43798 https://www.ladhanimetal.in/page/en-10130-cold-rolled-flat-sheet-plate-coil-data-sheet-equivalent-grade-and-chemical-and-mechanical-properties/68a45503fc14472bb274df32

Send Message
product image
Half Round Shield for Boiler Tube

Ladhani Metal Corporation offers SS 316 Half Round Tube Shields designed to protect boiler tubes in power plants, HRSGs, WHRBs, and industrial steam systems. Boiler tubes often face high-temperature flue gas erosion, oxidation, and soot blower impact, which can reduce their operational life. Manufactured from molybdenum-bearing austenitic stainless steel grade SS 316, these shields provide excellent resistance to pitting, crevice corrosion, and scaling in chloride-rich and corrosive boiler atmospheres, making them highly reliable for demanding service conditions. Function of Boiler Tubes • Carry water or steam through heating sections of the boiler • Continuously exposed to high-temperature flue gases, ash, and corrosive deposits • Require Half Round Tube Shields in high-erosion, soot blower, and corrosive zones Ladhani Metal Corporation manufactures, supplies, and exports SS 316 Half Round Tube Shields in customized lengths, diameters, and thicknesses to meet diverse industrial requirements worldwide. SS 316 Grade Chemical Composition – Austenitic Stainless Steel • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 16.00 – 18.00% • Nickel (Ni): 10.00 – 14.00% • Molybdenum (Mo): 2.00 – 3.00% • Iron (Fe): Balance Applications: Suitable for superheater and reheater tubes in thermal power stations, waste heat recovery boilers, HRSGs, petrochemical heaters, and steam plants exposed to corrosive flue gases and high operating temperatures. Uses • Protects boiler tubes against high-temperature corrosion and erosion • Shields tubes from soot blower and abrasive particle damage • Extends service life of boiler heating components in corrosive atmospheres • Widely used in WHRBs, HRSGs, and utility boilers requiring extra corrosion resistance Features • Superior resistance to corrosion and scaling in chloride-laden boiler environments • Enhanced pitting and crevice corrosion resistance due to molybdenum content • Excellent mechanical strength and stability at elevated temperatures • Manufactured for precise fit and easy installation Applications • Power generation boilers – Reliable protection for reheater and superheater tubes • Waste heat recovery boilers – Guards tubes against erosion and flue gas deposits • Industrial steam plants – Ensures longer life in corrosive and erosive atmospheres • Petrochemical process heaters – Ideal for chloride-rich and corrosive flue gas conditions Conclusion The SS 316 Half Round Tube Shield for Boiler Tubes by Ladhani Metal Corporation delivers reliable protection against erosion, scaling, and corrosive damage in harsh boiler environments. Designed with molybdenum-enhanced stainless steel, these shields ensure long service life, reduced maintenance, and superior resistance under severe operating conditions. Available in export-ready specifications, they are a trusted solution for global power, petrochemical, and industrial sectors. For supply and technical support, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Muzaffarpur#halftubeshield #utypehalftubeshield #tubeshieldexporter #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponentExport #FabricatedProducts #SteelDealer #IndustrialSupplyIndia #BoilerTubeFittings #TubeShieldingSolutions #HalfTubeCover #HeatExchangerShield #HalfRoundReheaterShield #ReheaterTubeShield #BoilerReheaterProtection #PowerPlantTubeShield #BoilerErosionShield

Send Message
product image
Titanium Rod

Product Name: Titanium rod grade 23 Standard: ASTM F136 Material: Gr23 (Gr5 ELI) Unit Price: $30.5 usd/kg- $52.5 usd/kg Application: Medical use Shape: Round Diameter: 3mm, 4mm, 5mm, 6mm, 8mm, 10mm, 12mm, 16mm, 20mm etc. Length: 1000mm, 3000mm, 6000mm or as per your request Surface: Bright Product Introduction Product name:Titanium rod grade 23 Material: GR23 Standard: ASTM F136 Diameter: 3mm, 4mm, 5mm, 6mm, 8mm, 10mm, 12mm, 16mm, 20mm etc. Length: 1000mm, 3000mm, 6000mm or as per your request Surface: Polishing,Bright Third-Party Tests: BV, SGS, TUV etc. Grade 23 is a higher purity version of Ti 6Al-4V. It can be made into coils, strands, wires or flat wires and is the first choice for any occasion that requires a combination of high strength, light weight, good corrosion resistance and high toughness. It has excellenct damage resistance superior to other alloys. These advantages make Ti 6AL-4V ELI the final dental and medical titanium grade product. Due to its biocompatibility, good fatigue strength and lo mdulus, it can be used in biomedical applications such as implantable parts. Grade 23 can also be used in detailed surgical procedures, such as: • Orthopedic pins and screws • Orthopedic cables • Ligation needles • Surgical staples • Springs • Orthodontic appliances • Joint replacements • Cryogenic containers • Bone fixators Mechanical Properties: Grade Tensile strength, MPa (min) Yield strength, MPa (min) Elongation, %(min) Reduction of Area, %(min) Gr23 828 759 10 15 Chemical Component (ASTM B348) Grade Ti Al V N, max C, max H, max Fe, max O, max Residuals Max each Max total Gr23 Main 5.5-6.5 3.5-4.5 0.03 0.08 0.0125 0.25 0.13 0.1 0.4

Send Message
product image
Titanium Welding Pipe For Heat Exchanger

Product name: Titanium welding pipe for heat exchanger Standard:ASTM B338 Material:Grade 1 Grade 2 titanium Diameter:15mm 19.1mm 25.4mm 33.4mm 38.1mm 45mm etc. Wall thickness:1.0mm / 1.2mm Length:Max 16000mm Surface:Pickling surface/Polished Application:Heat Exchanger, chemical industry etc. Technique:Welded Titanium seamless pipe for heat exchanger Titanium welded tube GR2 has α crystal structure. This alloy is widely used because of its good formability, moderate strength and excellent corrosion resistance. It has excellent corrosion resistance in strong oxidation and photoreduction environments, including chloride. Easy to weld, hot and cold processing and machining. These characteristics make it ideal for a wide range of applications, including Marine and Marine pipelines, reaction vessels and heat exchangers, Marine, automotive parts, medical and sports equipment in the aerospace, petrochemical, oil and gas and Marine industries. GR2 titanium welded pipe is made by crimping titanium or titanium alloy coil or wide plate welding into a tube. It has been widely used in electric power, seawater desalination, water treatment equipment, air conditioning equipment and other industries, but in the petrochemical industry, the use of titanium welded pipe is still in the promotion.

Send Message

Still searching for
scientific applications due?