Chennai
+919029362692

'product shape'

Items tagged with 'product shape'

product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. DC07 DIN EN 10130 1.0873 The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality. DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength. The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry. The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. DC06 DIN EN 10130 1.0873 The special deep-drawing grade DC06 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the requirements and test methods for cold-rolled products used in various industrial applications, especially where high demands are placed on formability and surface quality. DC06 is an ultra-low carbon steel characterized by outstanding cold formability. The chemical composition of DC06 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC06 contains a maximum of 0.01% carbon, a maximum of 0.20% manganese and only minimal traces of phosphorus and sulphur. This small amount of alloying elements contributes to the steel’s exceptional formability and weldability. The mechanical properties of DC06 are also clearly defined. The material has a maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. In addition, DC06 has an elongation at break of at least 40%, which underlines its excellent formability. These properties make DC06 particularly suitable for the production of complex and precise components that require high formability, such as deep-drawn body parts in the automotive industry or sophisticated components in the household appliance industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of the end user. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC06. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC06, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC06 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC06 therefore retains its outstanding cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC06. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC06 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC06 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on outstanding formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC06 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC05 DIN EN 10130 1.0312 St 15-03 The special deep-drawing grade DC05 is specified in accordance with the DIN EN 10130 standard, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products used in numerous industrial applications, particularly where exceptional formability and excellent surface quality are required. DC05 is a low-carbon steel that is characterized by its excellent cold formability. The chemical composition of DC05 is strictly controlled to ensure that the material has the desired mechanical properties. The carbon content in DC05 is typically a maximum of 0.02 %, while the manganese content is a maximum of 0.25 %. This composition promotes the high formability and weldability of the steel. The mechanical properties of DC05 are characterized by a low yield strength of maximum 150 MPa and a tensile strength between 270 and 350 MPa. An outstanding feature of DC05 is its high elongation at break of at least 38 %, which illustrates its excellent formability. These properties make DC05 ideal for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or sophisticated components in the electrical industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC05. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC05, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC05 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC05 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC05. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC05 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC05 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC05 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
COLD ROLLED SHEET

Quality Standard Material No. Old designation DC01 DIN EN 10130 1.0330 ST 12-03 Cold-rolled flat steel DC01, according to the standards DIN EN 10130 and DIN EN 10152 Cold-rolled flat steel DC01 is a widely used material in the industrial sector, which is used for various applications in the cold forming process due to its excellent properties. The standards DIN EN 10130 and DIN EN 10152 are decisive for ensuring the quality and requirements of this material. DC01 according to the DIN EN 10130 standard The DIN EN 10130 standard defines the requirements for cold-rolled flat products made of unalloyed quality steels that are used in the cold forming process. Technical delivery conditions DIN EN 10130 specifies the technical delivery conditions for cold-rolled flat steel. These include the chemical composition, mechanical properties and surface quality. The standard ensures that the products supplied meet the required standards in order to guarantee workability and final quality. Chemical composition The chemical composition of the steel is decisive for its properties and is described in detail in DIN EN 10130. For DC01, the maximum carbon content is 0.12%, while the manganese and phosphorus content is also subject to specific limits. This composition ensures good cold formability and a high surface quality. Mechanical properties DC01 in accordance with DIN EN 10130 has specific mechanical properties that make it ideal for cold forming. These include a minimum tensile strength of 270-410 MPa and a minimum elongation of 28%. These properties allow the steel to be processed into complex shapes without cracking or breaking. Surface quality The surface quality is another aspect of DIN EN 10130. DC01 can be supplied in different surface finishes, such as smooth or matt. These variations allow adaptation to specific requirements of the end application, be it for decorative purposes or further coating processes. DC01+ZE according to the DIN EN 10152 standard The DIN EN 10152 standard extends the requirements of DIN EN 10130 to include specific conditions for electrolytically galvanized products. This standard is crucial for applications in which corrosion protection plays an important role. Technical delivery conditions DIN EN 10152 specifies the technical delivery conditions for electrolytically galvanized, cold-rolled flat products. In addition to the chemical composition and mechanical properties, these conditions also include the specific requirements for the zinc coating. Chemical composition and zinc coating The chemical composition of the base material DC01 generally remains unchanged, but an additional electrolytic zinc coating is applied. This coating is used for corrosion protection and varies in thickness depending on the specific requirements of the application. The standard provides detailed specifications for the thickness and uniformity of the zinc coating to ensure optimum protection. Mechanical properties Even with galvanized products, the mechanical properties of the base material are largely retained. The standard ensures that the cold formability and strength of the steel are not impaired despite the additional coating. Corrosion resistance and surface quality One of the main advantages of products manufactured in accordance with DIN EN 10152 is their improved corrosion resistance. Electrolytic galvanizing protects the steel from rust and thus increases the service life of the end product. The surface quality also plays a decisive role here and can be supplied in various finishes, such as smooth or textured. Conclusion Cold-rolled flat steel DC01, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC01 is a versatile material with high quality and durability. FOR EN 10130 DC01 CHEMICAL , MECHANICAL DATA SHEET KINDLY VISIT https://www.ladhanimetal.in/page/en-10130-2006-chemical-and-mechanical-composition/689c322d2e585e299cb43798 https://www.ladhanimetal.in/page/en-10130-cold-rolled-flat-sheet-plate-coil-data-sheet-equivalent-grade-and-chemical-and-mechanical-properties/68a45503fc14472bb274df32

Send Message
product image
Boiler Half Round Tube Shield

Ladhani Metal Corporation offers SS 316 Boiler Half Round Tube Shields designed to protect straight boiler and heat exchanger tubes from corrosion, erosion, and high-temperature damage in aggressive service environments. Manufactured from austenitic stainless steel grade SS 316, these shields provide superior corrosion resistance, especially against chlorides and acidic flue gases. SS 316 is ideal for applications where moisture, chemical vapors, and thermal stress are present, including marine boilers, waste heat recovery systems, and chemical processing units. Each shield is precision-formed into a half-round profile for a close and secure fit over the outer surface of boiler tubes. This design provides a robust barrier against soot blower impact, abrasive ash particles, and corrosive condensates. The mechanical protection offered by SS 316 shields significantly extends tube service life and reduces maintenance downtime. Ladhani Metal Corporation manufactures, supplies, and exports SS 316 Boiler Half Round Tube Shields in multiple diameters, lengths, and thicknesses to meet the exact specifications of domestic and international projects. SS 316 Grade Chemical Composition – Austenitic Stainless Steel • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Iron (Fe): Balance Applications: Suitable for corrosive and high-moisture environments such as power plants, waste heat boilers, refineries, and process heaters. Uses • Protection of straight boiler tubes in moist or acidic gas streams • Used in marine boilers and off-shore heating systems • Shields against corrosion, scaling, and thermal erosion • Installed in chemical and petrochemical flue gas lines • Suitable for food, pharmaceutical, and pulp industry boilers Features • Excellent corrosion resistance – Especially effective against chlorides and chemicals • High thermal stability – Performs under prolonged heat and steam exposure • Durable and long-lasting – Reduces tube wear and replacement frequency • Precision fit – Half-round shape conforms to tube curvature for full coverage • Easy to install – Can be clamped, banded, or tack welded as needed • Export quality – Manufactured to meet global boiler protection standards Applications • Power generation and utility boilers – For flue gas and steam tube protection • Chemical and fertilizer industries – Withstands corrosive vapors and condensates • Pulp and paper mills – Used in high-moisture heating environments • Waste heat recovery systems – Effective in corrosive flue gas streams Conclusion The SS 316 Boiler Half Round Tube Shield from Ladhani Metal Corporation offers robust, corrosion-resistant protection for boiler tubes exposed to chemically aggressive and high-moisture conditions. With added molybdenum content for enhanced durability and precise half-round design, these shields are ideal for a wide range of industrial and marine boiler applications. For customized specifications, export orders, or technical assistance, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Salem #Erode #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Hassan #Cuttack #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Gaya #Muzaffarpur #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponentExport #FabricatedProducts #SteelDealer #IndustrialSupplyIndia #BoilerTubeFittings #TubeShieldingSolutions #HalfTubeCover #HeatExchangerShield #halftubeshield #utypehalftubeshield

Send Message
product image
Outer Half Round 90 Degree Bend Tube Shield

Ladhani Metal Corporation offers robust SS 410 Outer Half Round 90 Degree Bend Tube Shields designed to protect the outer curvature of 90-degree bends and U-bend tubes in boilers, heat exchangers, reheaters, and waste heat recovery systems. Manufactured from martensitic stainless steel grade SS 410, these shields provide excellent resistance to abrasion, scaling, and thermal fatigue, making them ideal for high-wear zones where mechanical durability is critical. The semi-cylindrical shield conforms to the outer arc of curved tubes, forming a physical barrier that prevents fly ash erosion, gas flow impingement, and high-temperature wear. Widely used in power plants and industrial steam systems, these shields ensure longer tube life and reduce unplanned maintenance. Ladhani Metal Corporation is a trusted manufacturer, supplier, and exporter of SS 410 Outer Half Round 90 Degree Bend Tube Shields, offering custom-made solutions tailored to plant specifications and coil geometries. SS 410 Grade Chemical Composition – Martensitic Stainless Steel • Carbon (C): 0.08 – 0.15% • Manganese (Mn): ≤ 1.00% • Phosphorus (P): ≤ 0.040% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 11.5 – 13.5% • Nickel (Ni): ≤ 0.75% • Iron (Fe): Balance Applications: Ideal for high-wear, moderately corrosive environments such as power boilers, WHRBs, HRSGs, and industrial heaters. Uses • Shielding 90-degree return bends in boilers and reheaters • Protecting U-bend tubes in WHRBs and flue gas systems • Guarding tube bends in waste heat sections of thermal processing units • Applied in environments where erosion from ash or particulate flow is prevalent Features • Excellent wear resistance – Ideal for abrasive service conditions • Thermal stability – Maintains strength and hardness at elevated temperatures • Mechanical durability – Withstands impact, vibration, and cyclic stresses • Accurate fit – Precision-shaped to match tube bend radius and diameter • Installation flexibility – Can be clamped, welded, or banded securely • Custom options – Available in various lengths, radii, and wall thicknesses Applications • Thermal power plants – Protects critical bend zones in high-ash areas • WHRBs and HRSGs – Used in exhaust recovery systems exposed to soot and gas flow • Petrochemical units – Applied in high-temperature reformers and heaters • Cement and process industries – Guards curved tube surfaces from scale and erosion Conclusion The SS 410 Outer Half Round 90 Degree Bend Tube Shield by Ladhani Metal Corporation is a durable and cost-effective solution for protecting curved boiler and heat exchanger tubes in abrasive and thermal environments. With superior wear resistance and reliable mechanical strength, it extends service life and enhances equipment performance. For custom sizing, material selection, or technical specifications, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Salem #Erode #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Hassan #Cuttack #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Gaya #Muzaffarpur #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponentExport #FabricatedProducts #SteelDealer #IndustrialSupplyIndia #BoilerTubeFittings #TubeShieldingSolutions #HalfTubeCover #HeatExchangerShield #halftubeshield #utypehalftubeshield #tubeshieldexporter

Send Message
product image
Outer Half Round 90 Degree Bend Tube Shield

Ladhani Metal Corporation offers top-grade SS 316 Outer Half Round 90 Degree Bend Tube Shields designed to provide robust protection to the outer curvature of U-bend and 90-degree return tubes in boilers, superheaters, heat exchangers, and waste heat recovery systems. Manufactured from austenitic stainless steel SS 316, these shields offer superior resistance to pitting, crevice corrosion, and chloride-induced attack, making them ideal for environments with aggressive chemical exposure and high-temperature steam. The shields feature a precisely contoured semi-cylindrical shape that wraps securely around the outer arc of curved tubes. This design creates a physical barrier against flue gas erosion, fly ash impingement, and thermal degradation. Ladhani Metal Corporation—an established manufacturer, supplier, and exporter—provides fully customizable SS 316 bend shields to suit a wide range of boiler and process equipment configurations. SS 316 Grade Chemical Composition – Austenitic Stainless Steel • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Iron (Fe): Balance Applications: Specifically suited for high-chloride and corrosive service conditions in boilers, HRSGs, WHRBs, and industrial heat exchangers. Uses • Protection of 90-degree bends and U-bends in superheaters and reheaters • Shields return tube arcs in marine boilers, HRSGs, and process steam systems • Ideal for corrosive environments in petrochemical, desalination, and coastal plants • Guards curved sections in heat exchangers, WHRBs, and flue gas circuits Features • Excellent corrosion resistance – Molybdenum enhances protection in chloride-laden atmospheres • High-temperature stability – Performs reliably under fluctuating thermal loads • Erosion resistance – Shields tube curves from ash erosion and gas flow impingement • Precision-formed – Engineered to match tube diameter and bend radius for accurate fit • Versatile installation – Can be tack welded, clamped, or banded securely • Custom options – Available in multiple wall thicknesses, lengths, and curvature specifications Applications • Thermal power plants – Used to shield U-bends in superheater and reheater coils • Chemical plants – Provides long-term protection in acidic or steam-rich environments • HRSGs and WHRBs – Prevents erosion in high-velocity flue gas areas • Marine and coastal installations – Resists corrosion from saltwater-laden air and gases Conclusion The SS 316 Outer Half Round 90 Degree Bend Tube Shield by Ladhani Metal Corporation offers durable, high-performance protection for boiler and exchanger tubes in harsh service conditions. Its superior corrosion resistance, thermal durability, and precision engineering make it a reliable choice for extending tube life and reducing unplanned outages. For custom sizing, material selection, or technical specifications, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Salem #Erode #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Hassan #Cuttack #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Gaya #Muzaffarpur #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponentExport #FabricatedProducts #SteelDealer #IndustrialSupplyIndia #BoilerTubeFittings #TubeShieldingSolutions #HalfTubeCover #HeatExchangerShield #halftubeshield #utypehalftubeshield #tubeshieldexporter

Send Message

Still searching for
product shape?