Chennai
+919029362692

'large amount'

Items tagged with 'large amount'

product image
sheet

ungsten-Copper Sheet is a composite material that combines the exceptional properties of both tungsten (W) and copper (Cu), offering a unique blend of high density, heat resistance, electrical conductivity, and machinability. This alloy is used in applications that require both the extreme heat resistance and strength of tungsten, combined with the excellent thermal and electrical conductivity of copper. Properties: · Density: Tungsten-copper sheets are dense, with a specific gravity that lies between that of pure tungsten and pure copper. The density depends on the ratio of tungsten to copper, but it remains significantly higher than most common metals. This makes them useful for applications that require weight and stability in compact forms. · Color and Appearance: Tungsten copper sheets typically have a metallic, steel-gray or brownish color, with a smooth surface that may be finished through machining, polishing, or grinding processes. The copper content can give the surface a slightly reddish hue depending on the ratio. · Thickness and Dimensions: Tungsten-copper sheets are available in various thicknesses, ranging from thin foils to thicker sheets, and can be custom-manufactured to meet specific size requirements. The sheets can be precision-cut or machined to fit specific designs. Applications of Tungsten-Copper Sheet: · Electrical and Electronics: Electrical Contacts and Commutators: Tungsten-copper sheets are used in electrical components that require both high conductivity and high resistance to wear and heat, such as electrical contacts in high-voltage switches and commutators. · Aerospace and Defense: Heat Shields: Due to their high-temperature stability and excellent heat dissipation properties, tungsten-copper sheets are used in aerospace applications like heat shields and rocket nozzles. · Nuclear Industry: Tungsten-copper sheets are used in nuclear reactors for radiation shielding and high-temperature applications where both mechanical strength and heat management are essential.

Send Message
product image
Gr1 Titanium Pipe For Heat Exchanger

Product Name: Titanium Pipe Standard: ASTM B338 Material: Gr1, Gr2 Unit Price: $25usd/kg-$40usd/kg Type: Welded/Seamless Shape: Round Outer Diameter: 9.52mm/12.7mm/15.9mm/19mm/21.7mm/25.4mm/32mm/33.4mm/38mm/45mm etc. Wall Thickness: 0.5-3.0mm Length: Max 12000mm Surface: Bright Features of Gr1 titanium pipe: 1. Gr1 titanium pipe has plasticity. The elongation rate of the high-purity titanium pipe can reach 50-60%, and the reduction of area can reach 70-80%. Although the strength of high-purity titanium pipe is low, the pure industrial titanium contains a small amount of impurities and the addition of alloying elements can significantly strengthen its mechanical properties, making its strength comparable to high strength. This means that as long as the industrial pure titanium pipe contains a small amount of interstitial impurities and other metal impurities, it can make it have both high strength and appropriate plasticity. 2. The specific strength (strength to weight ratio) of industrial pure titanium pipe is very high in metal structural materials. Its strength is equivalent to steel, but its weight is only 57% of steel. 3. Gr1 titanium pipe has strong heat resistance, and can still maintain good strength and stability in the atmosphere at 500°C. 4. Titanium pipe also has good low temperature resistance. Even at the ultra-low temperature of -250℃, it still has high impact strength and can withstand high pressure and vibration. 5. Strong corrosion resistance, this is because it has a particularly large affinity for oxygen, and can form a dense oxide film on its surface, which can protect titanium from corrosion by the medium. Therefore, titanium has good stability in acidic, alkaline, neutral salt solutions and oxidizing media, and has better corrosion resistance than existing stainless steel and other non-ferrous metals. Chemical Composition (Wt%) ASTMNo. Femax O max Nmax Cmax Hmax Pd Al Bal Grade1 0.2 0.18 0.03 0.1 0.015 - - Ti Physical Properties(Min) ASTMGrade AlloyComposition TensileStrength YieldStrength Elongation min % ksi Mpa ksi Mpa Grade 1 UnalloyedTi("Pure")35A-CP1 35 240 20 138 24

Send Message
product image
Titanium Alloy Tubes

Product name: Titanium alloy Tubes Standard:ASTM B338 ASTM B861 ASTM B862 Material:Titanium Gr7 Diameter:5-914mm Wall thickness:0.5-50mm Length:Max 16000mm Surface:Pickling surface/Polished Type:Seamless, welded Application:Heat Exchanger, chemical industry etc. Technique:Rolled Because stainless steel and other materials are inefficient in many cases, titanium tubes are increasingly used in various occasions. A common titanium grinding product is titanium tube. Because of its superior corrosion resistance and strength weight ratio, titanium tube is used in various products. The development of many different alloys has expanded the application of titanium in industry, chemical processing and power generation. Commodity Titanium Alloy Tube /Pipe/Tubing,titanium alloy seamless tube/pipe,titanium alloy welded tube pipe,ASTM B338 titanium tube,Titanium pipe price per kg Tube Shape Round Square Flat Coil Material Gr1,Gr2,Gr3,Gr4,Gr5(Ti-6Al-4V),Gr7,Gr9,Gr11,Gr12,Gr23(Ti-6Al-4V Eli) Standard ASTM B337 ASTM B338 ASTM B861 ASTM B862 Type Seamless Welded ERW Fabricated OD 5-914mm or as customized Wall Thickness 0.5-50mm or as customized Length Max 16000mm End Plain End, Beveled End, Threaded Certificate EN 10204/3.1B, Raw Materials Certificate 100% Radiography Test Report Third Party Inspection Report, etc Application Off-Shore Oil Drilling Companies Power Generation Petrochemicals Gas Processing Specialty Chemicals Pharmaceuticals Pharmaceutical Equipment Chemical Equipment Sea Water Equipment Heat Exchangers Condensers Pulp and Paper Industry Titanium alloy tubes can be divided into three categories according to phase composition: α Alloy( α+β) Alloy and β alloy 1. α Stability of alloy containing a certain amount α The element of phase, in equilibrium, is mainly composed of α Phase composition. α The alloy has small specific gravity, good thermal strength, good weldability and excellent corrosion resistance. Its disadvantage is low strength at room temperature. It is usually used as heat-resistant and corrosion-resistant materials. α Alloys can usually be divided into complete alloys α Alloy (Gr7), near α Alloy (ti-8al-1mo-1v) and alloy with a small amount of compounds α Alloy (Ti-2.5Cu). 2. ( α+β) Stability of alloy containing a certain amount α Phase harmony β Phase elements, and the microstructure of the alloy in equilibrium is α Phase harmony β Phase. ( α+β) The alloy has medium strength and can be strengthened by heat treatment, but its weldability is poor. ( α+ β) Alloys are widely used, and the output of Ti-6Al-4V Alloy accounts for more than half of all titanium materials. 3. β The alloy contains a large amount of stable β Phase elements can be used at high temperature β All phases were retained to room temperature. β Alloys can usually be divided into heat treatable alloys β Alloy (metastable) β Alloy and near metastable β Alloy) and thermal stability β Alloy. Heat treatable β The alloy has excellent plasticity in quenched state, and the tensile strength can reach 130 ~ 140kgf / mm2 by aging treatment. β Alloys are usually used as high strength and high toughness materials. The disadvantages are large ratio, high cost, poor welding performance and difficult machining.

Send Message
product image

Product name: Titanium alloy Tubes Standard:ASTM B338 ASTM B861 ASTM B862 Material:Titanium Gr7 Diameter:5-914mm Wall thickness:0.5-50mm Length:Max 16000mm Surface:Pickling surface/Polished Type:Seamless, welded Application:Heat Exchanger, chemical industry etc. Technique:Rolled Titanium alloy Tubes Because stainless steel and other materials are inefficient in many cases, titanium tubes are increasingly used in various occasions. A common titanium grinding product is titanium tube. Because of its superior corrosion resistance and strength weight ratio, titanium tube is used in various products. The development of many different alloys has expanded the application of titanium in industry, chemical processing and power generation. Commodity: Titanium Alloy Tube /Pipe/Tubing,titanium alloy seamless tube/pipe,titanium alloy welded tube pipe,ASTM B338 titanium tube,Titanium pipe price per kg Tube Shape: Round Square Flat Coil Material: Gr1,Gr2,Gr3,Gr4,Gr5(Ti-6Al-4V),Gr7,Gr9,Gr11,Gr12,Gr23(Ti-6Al-4V Eli) Standard: ASTM B337 ASTM B338 ASTM B861 ASTM B862 Type: Seamless Welded ERW Fabricated OD: 5-914mm or as customized Wall Thickness: 0.5-50mm or as customized Length: Max 16000mm End: Plain End, Beveled End, Threaded Certificate: EN 10204/3.1B, Raw Materials Certificate 100% Radiography Test Report Third Party Inspection Report, etc Application: Off-Shore Oil Drilling Companies Power Generation Petrochemicals Gas Processing Specialty Chemicals Pharmaceuticals Pharmaceutical Equipment Chemical Equipment Sea Water Equipment Heat Exchangers Condensers Pulp and Paper Industry Titanium alloy tubes can be divided into three categories according to phase composition: α Alloy( α+β) Alloy and β alloy 1. α Stability of alloy containing a certain amount α The element of phase, in equilibrium, is mainly composed of α Phase composition. α The alloy has small specific gravity, good thermal strength, good weldability and excellent corrosion resistance. Its disadvantage is low strength at room temperature. It is usually used as heat-resistant and corrosion-resistant materials. α Alloys can usually be divided into complete alloys α Alloy (Gr7), near α Alloy (ti-8al-1mo-1v) and alloy with a small amount of compounds α Alloy (Ti-2.5Cu). 2. ( α+β) Stability of alloy containing a certain amount α Phase harmony β Phase elements, and the microstructure of the alloy in equilibrium is α Phase harmony β Phase. ( α+β) The alloy has medium strength and can be strengthened by heat treatment, but its weldability is poor. ( α+ β) Alloys are widely used, and the output of Ti-6Al-4V Alloy accounts for more than half of all titanium materials. 3. β The alloy contains a large amount of stable β Phase elements can be used at high temperature β All phases were retained to room temperature. β Alloys can usually be divided into heat treatable alloys β Alloy (metastable) β Alloy and near metastable β Alloy) and thermal stability β Alloy. Heat treatable β The alloy has excellent plasticity in quenched state, and the tensile strength can reach 130 ~ 140kgf / mm2 by aging treatment. β Alloys are usually used as high strength and high toughness materials. The disadvantages are large ratio, high cost, poor welding performance and difficult machining. LADHANI METAL CORPORATION, MUMBAI, INDIA Company Information Ladhani Metal Corporation. We are committed to integrate engineering steel resources in India and serve the global engineering steel market. Our company has more than 32 years of experience in steel researching, production, managing and sales. In the aspect of resources and information, we have established cooperative and stronger relationship with nearly hundred enterprises, either state-owned or private owned in India. What’s more, we have built long, deep and close business relationship with dozens of steel company, Sharing and holding equities with several steel enterprises. Because of the close cooperation with steel companies and our pioneering spirit, which can ensure us stay at the top competition, and ensure our customers get what they really want! FOR MORE DETAIL CONTACT US AT :- ladhanimetal@gmail.com ladhanimetals@gmail.com www.ladhanimetal.in www.ladhanimetal.com LADHANI METAL CORPORATION, MUMABAI, INDIA, AVAILABLE AT FOLLOWING LOCATION:- Adilabad, Agartala, Agra, Ahmedabad, Ahmednagar, Ajmer, Akola , Aligarh , Alipore , Allahabad , Alleppey , Almora , Alwar , Alwaye , Amalapuram , Amaravati , Ambala , Amreli , Amritsar , Anakapalle , Anand , Anantapur , Andhra Pradesh , Anna Road , Arakkonam , Arunachal Pradesh , Asansol , Aska , Assam , Aurangabad , Azamgarh , Bagalkot , Bahraich , Balaghat , Balangir , Balasore , Ballia , Banasanktha , Banda , Bangalore , Bankura , Barabanki , Barabazaar , Baramulla , Barasat , Bardoli , Bareilly , Barmer , Bastar , Basti , Beawar , Beed , Begusarai , Belgaum , Bellary , Berhampur , Bhadrak , Bhagalpur , Bharatpur , Bharuch , Bhatinda , Bhavnagar , Bhilwara , Bhimavaram , Bhiwani , Bhojpur , Bhopal , Bhubaneswar , Bhusaval , Bidar , Bihar , Bijapur , Bijnor , Bikaner , Bilaspur , Birbhum , Budaun , Bulandshahar , Buldana , Burdwan , Cachar , Calcutta , Calicut , Cannanore , Chamba , Chamoli , Chandigarh , Chandrapur , Changanacherry , Channapatna , Chattisgarh , Chengalpattu , Chennai , Chhatarpur , Chhindwara , Chikmagalur , Chikodi , Chitradurga , Chittoor , Chittorgarh , Churu , Coimbatore , Contai , Cooch Behar , Cuddalore , Cuddapah , Cuttack , Darbhanga , Darjeeling , Darrang , Dehra Gopipur , Dehradun , Delhi , Delhi , Deoria , Dhanbad , Dharamsala , Dharmanagar , Dharmapuri , Dharwad , Dhenkanal , Dholpur , Dhule , Dibrugarh , Dinajpur , Dindigul , divisionname , Dungarpur , Durg , Eluru , Ernakulam , Erode , Etah , Etawah , Faizabad , Faridabad , Faridkot , Fatehgarh , Fatehpur , Ferozpur , Gadag , Gandhinagar , Gaya , Ghaziabad , Ghazipur , Giridih , Goa , Goalpara , Gokak , Gonda , Gondal , Gorakhpur , Gudivada , Gudur , Gujarat , Gulbarga , Guna , Guntur , Gurdaspur , Gurgaon , Guwahati , Gwalior , Hamirpur , Hanamkonda , Hardoi , Haryana , Hassan , Haveri , Hazaribagh , Himachal Pradesh , Hindupur , Hissar , Hooghly , Hoshangabad , Hoshiarpur , Howrah , Hyderabad , Idukki , Indore , Irinjalakuda , Jabalpur , Jaipur , Jalandhar , Jalgaon , Jalpaiguri , Jammu , Jammu kashmir , Jamnagar , Jaunpur , Jhansi , Jharkhand , Jhunjhunu , Jodhpur , Junagadh , Kakinada , Kalahandi , Kanchipuram , Kanniyakumari , Kanpur , Kapurthala , Karaikudi , Karimnagar , Karnal , Karnataka , Karur , Karwar , Kasaragod , Keonjhar , Kerala , Khammam , Khandwa , Kheda , Kheri , Kodagu , Kolar , Kolhapur , Kolkata , Koraput , Kota , Kottayam , Kovilpatti , Krishnagiri , Kumbakonam , Kurnool , Kurukshetra , Kutch , Lakshadweep , Leh , Lucknow , Ludhiana , Machilipatnam , Madhubani , Madhya Pradesh , Madurai , Mahabubnagar , Maharashtra , Mahesana , Mainpuri , Malda , Malegaon , Mandi , Mandsaur , Mandya , Mangalore , Manipur , Manjeri , Mathura , Mavelikara , Mayiladuthurai , Mayurbhanj , Medak , Meerut , Meghalaya , Midnapore , Mirzapur , Mizoram , Monghyr , Moradabad , Morena , Mumbai , Murshidabad , Muzaffarnagar , Muzaffarpur , Mysore , Nadia , Nagaland , Nagaon , Nagapattinam , Nagaur , Nagpur , Nainital , Nalanda , Nalbari , Nalgonda , Namakkal , Nanded , Nandyal , Nanjangud , Narasaraopet , Nasik , Navsari , Nawadha , Nellore , New Delhi , New Mumbai , Nilgiris , Nizamabad , North Eastern , Odisha , Osmanabad , Ottapalam , Palamau , Palghat , Pali , Panchmahals , Pandharpur , Parvathipuram , Patan , Pathanamthitta , Patiala , Patna , Pattukottai , Pauri , Peddapalli , Pharbhani , Phulbani , Pithoragarh , Pollachi , Pondicherry , Porbandar , Prakasam , Pratapgarh , Proddatur , Pudukkottai , Pune , Punjab , Puri , Purnea , Purulia , Puttur , Quilon , Rae Bareilly , Raichur , Raigad , Raigarh , Raipur , Rajahmundry , Rajasthan , Rajkot , Rajouri , Ramanathapuram , Rampur Bushahr , Ranchi , Ratlam , Ratnagiri , Rewa , Rohtak , Rohtas , Sabarkantha , Sagar , Saharanpur , Saharsa , Salem , Samastipur , Sambalpur , Sangareddy , Sangli , Sangrur , Santhal Parganas , Saran , Satara , Sawaimadhopur , Secunderabad , Sehore , Shahdol , Shahjahanpur , Shimla , Shimoga , Shrirampur , Sibsagar , Sikar , Sikkim , Sindhudurg , Singhbhum , Sirohi , Sirsi , Sitamarhi , Sitapur , Sivaganga , Siwan , Solan , Solapur , Sonepat , Sriganganagar , Srikakulam , Srinagar , Srirangam , Sultanpur , Sundargarh , Surat , Surendranagar , Suryapet , Tadepalligudem , Tambaram , Tamilnadu , Tamluk , Tehri , Tenali , Thalassery , Thane , Thanjavur , Theni , Tinsukia , Tiruchirapalli , Tirunelveli , Tirupati , Tirupattur , Tirupur , Tirur , Tiruvalla , Tiruvannamalai , Tonk , Trichur , Trivandrum , Tumkur , Tuticorin , Udaipur , Udhampur , Udupi , Ujjain , Una , Uttar Pradesh , Uttarakhand , Vadakara , Vadodara , Vaishali , Valsad , Varanasi , Vellore , Vidisha , Vijayawada , Virudhunagar , Visakhapatnam , Vizianagaram , Vriddhachalam , Wanaparthy , Warangal , Wardha , West Bengal , Yeotmal , Bangalore , Hyderabad , Chennai , Kolkata , Jaipur , Indore , Thane , Pimpri-Chinchwad , Nashik , Kalyan-Dombivli , Vasai-Virar , Varanasi , Navi Mumbai , Hubli–Dharwad , Tiruchirappalli , Tiruppur , Salem , Mira-Bhayandar , Bhiwandi , Amravati , Noida , Jamshedpur , Bhilai , Cuttack , Firozabad , Kochi , Durgapur , Rourkela , Loni , Siliguri , Ulhasnagar , Sangli-Miraj & Kupwad , Ambattur , Thiruvananthapuram , Davanagere , Kozhikode , Maheshtala , Rajpur Sonarpur , Bokaro , South Dumdum , Gopalpur , Bhatpara , Panihati , Latur , Korba , Kollam , Avadi , Kadapa , Kamarhati , Rampur , Thrissur , Bardhaman , Kulti , Parbhani , Ozhukarai , Bihar Sharif , Panipat , Bally , Aizawl , Dewas , Ichalkaranji , Bathinda , Jalna , Kirari Suleman Nagar , Purnia , Satna , Mau , Sonipat , Farrukhabad , Imphal , Hapur , Arrah , Ambarnath , North Dumdum , New Delhi , Gandhidham , Baranagar , Tiruvottiyur , Thoothukudi , Ramagundam , Silchar , Haridwar , Vijayanagaram , Nagercoil , Sri Ganganagar , Karawal Nagar , Mango , Bulandshahr , Uluberia , Katni , Sambhal , Singrauli , Nadiad , Naihati , Yamunanagar , Bidhannagar , Pallavaram , Munger , Panchkula , Burhanpur , Raurkela Industrial Township , Kharagpur , Hospet , Nangloi Jat , Ongole , Deoghar , Chapra , Haldia , Amroha , Bhind , Bhalswa Jahangir Pur , Madhyamgram , Berhampore , Morbi , Raebareli , Khora, Ghaziabad , Bhusawal , Orai , Phusro , Mehsana , Raiganj , Sirsa , Danapur , Serampore , Sultan Pur Majra , Panvel , Shivpuri , Surendranagar Dudhrej , Unnao , Chinsurah , Alappuzha , Adoni , Katihar , Mahbubnagar , Jorhat , Sasaram , Hajipur , Bongaigaon , Dehri , Madanapalle , Bettiah , Ramgarh , Guntakal , Motihari , Dharmavaram , Medininagar , Phagwara , Hosur , Miryalaguda , Tadipatri , Kishanganj , Jamalpur , Kavali , Buxar , Tezpur , Jehanabad , Gangtok , Assam , Bihar , Chattisgarh , Delhi , Gujarat , Haryana , Himachal Pradesh , Jammu kashmir , Jharkhand , Karnataka , Kerala , Madhya Pradesh , Maharashtra , Odisha , Punjab , Rajasthan , Tamilnadu , Uttar Pradesh , Uttarakhand , west Bengal WE EXPORT TO FOLLOWING COUTRIES Switzerland , Afghanistan , Albania , Algeria , Angola , AntiguaandBarbuda , Argentina , Armenia , Aruba , Australia , Austria , Azerbaijan , Bahrain , Bangladesh , Barbados , Belarus , Belgium , Belize , Benin , Bhutan , Bolivia , BosniaandHerzegovina , Botswana , Brazil , Brunei , Bulgaria , BurkinaFaso , Burundi , CaboVerde , Cambodia , Cameroon , Canada , CentralAfricanRepublic , Chad , Chile , China , Colombia , Comoros , Congo , CostaRica , Côted'Ivoire , Croatia , Cyprus , CzechRepublic , Denmark , Djibouti , Dominica , DominicanRepublic , Ecuador , Egypt , ElSalvador , EquatorialGuinea , Eritrea , Eswatini , Ethiopia , Fiji , Finland , France , Gabon , Georgia , Germany , Ghana , Greece , Grenada , Guatemala , Guinea , Guinea-Bissau , Guyana , Haiti , Honduras , HongKong , Hungary , Iceland , Indonesia , Iran , Iraq , Ireland , Israel , Italy , Jamaica , Japan , Jordan , Kazakhstan , Kenya , Kiribati , Kosovo , Kuwait , Kyrgyzstan , Laos , Latvia , Lebanon , Lesotho , Liberia , Libya , Lithuania , Luxembourg , Macau , Madagascar , Malawi , Malaysia , Maldives , Mali , Malta , MarshallIslands , Mauritania , Mauritius , Mexico , Micronesia,FederatedStatesof , Moldova , Mongolia , Montenegro , Morocco , Mozambique , Myanmar , Namibia , Nauru , Netherlands , NewZealand , Nicaragua , Niger , Nigeria , NorthMacedonia , Norway , Oman , Palau , Panama , PapuaNewGuinea , Paraguay , Peru , Philippines , Poland , Portugal , PuertoRico , Qatar , Romania , Russia , Rwanda , SaintKittsandNevis , SaintLucia , SaintVincentandtheGrenadines , Samoa , SanMarino , SãoToméandPríncipe , SaudiArabia , Senegal , Serbia , Seychelles , SierraLeone , Singapore , Slovakia , Slovenia , SolomonIslands , SouthAfrica , SouthKorea , SouthSudan , Spain , SriLanka , Sudan , Suriname , Sweden , Taiwan , Tajikistan , Tanzania , Thailand , TheBahamas , TheGambia , Timor-Leste , Togo , Tonga , TrinidadandTobago , Tunisia , Turkey , Turkmenistan , Tuvalu , Uganda , Ukraine , UnitedArabEmirates , UnitedKingdom , UnitedStates , Uruguay , Uzbekistan , Vanuatu , Venezuela , Vietnam , Yemen , Zambia , Zimbabwe , Estonia , Nepal

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
COLD ROLLED SHEET

Quality Standard Material No. Old designation DC01 DIN EN 10130 1.0330 ST 12-03 Cold-rolled flat steel DC01, according to the standards DIN EN 10130 and DIN EN 10152 Cold-rolled flat steel DC01 is a widely used material in the industrial sector, which is used for various applications in the cold forming process due to its excellent properties. The standards DIN EN 10130 and DIN EN 10152 are decisive for ensuring the quality and requirements of this material. DC01 according to the DIN EN 10130 standard The DIN EN 10130 standard defines the requirements for cold-rolled flat products made of unalloyed quality steels that are used in the cold forming process. Technical delivery conditions DIN EN 10130 specifies the technical delivery conditions for cold-rolled flat steel. These include the chemical composition, mechanical properties and surface quality. The standard ensures that the products supplied meet the required standards in order to guarantee workability and final quality. Chemical composition The chemical composition of the steel is decisive for its properties and is described in detail in DIN EN 10130. For DC01, the maximum carbon content is 0.12%, while the manganese and phosphorus content is also subject to specific limits. This composition ensures good cold formability and a high surface quality. Mechanical properties DC01 in accordance with DIN EN 10130 has specific mechanical properties that make it ideal for cold forming. These include a minimum tensile strength of 270-410 MPa and a minimum elongation of 28%. These properties allow the steel to be processed into complex shapes without cracking or breaking. Surface quality The surface quality is another aspect of DIN EN 10130. DC01 can be supplied in different surface finishes, such as smooth or matt. These variations allow adaptation to specific requirements of the end application, be it for decorative purposes or further coating processes. DC01+ZE according to the DIN EN 10152 standard The DIN EN 10152 standard extends the requirements of DIN EN 10130 to include specific conditions for electrolytically galvanized products. This standard is crucial for applications in which corrosion protection plays an important role. Technical delivery conditions DIN EN 10152 specifies the technical delivery conditions for electrolytically galvanized, cold-rolled flat products. In addition to the chemical composition and mechanical properties, these conditions also include the specific requirements for the zinc coating. Chemical composition and zinc coating The chemical composition of the base material DC01 generally remains unchanged, but an additional electrolytic zinc coating is applied. This coating is used for corrosion protection and varies in thickness depending on the specific requirements of the application. The standard provides detailed specifications for the thickness and uniformity of the zinc coating to ensure optimum protection. Mechanical properties Even with galvanized products, the mechanical properties of the base material are largely retained. The standard ensures that the cold formability and strength of the steel are not impaired despite the additional coating. Corrosion resistance and surface quality One of the main advantages of products manufactured in accordance with DIN EN 10152 is their improved corrosion resistance. Electrolytic galvanizing protects the steel from rust and thus increases the service life of the end product. The surface quality also plays a decisive role here and can be supplied in various finishes, such as smooth or textured. Conclusion Cold-rolled flat steel DC01, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC01 is a versatile material with high quality and durability. FOR EN 10130 DC01 CHEMICAL , MECHANICAL DATA SHEET KINDLY VISIT https://www.ladhanimetal.in/page/en-10130-2006-chemical-and-mechanical-composition/689c322d2e585e299cb43798 https://www.ladhanimetal.in/page/en-10130-cold-rolled-flat-sheet-plate-coil-data-sheet-equivalent-grade-and-chemical-and-mechanical-properties/68a45503fc14472bb274df32

Send Message
product image
Half Round Tube Shield

Half Round Tube Shield Half Round Tube Shields by Ladhani Metal Corporation are precision-engineered components designed to protect the outer surfaces of boiler tubes, heat exchangers, and industrial piping systems from erosion, scale formation, and thermal fatigue. These shields play a crucial role in minimizing tube failure and improving overall equipment reliability in high-temperature and particulate-laden environments. SS 430 Half Round Tube Shield The SS 430 Half Round Tube Shield is a semi-cylindrical cladding made from ferritic stainless steel grade 430. With good corrosion resistance, excellent oxidation resistance, and superior thermal conductivity, SS 430 is well suited for non-pressurized or moderately corrosive environments. It is particularly effective in flue gas paths and air preheaters where thermal stress and ash erosion can degrade exposed tubes. The half-round geometry ensures easy, secure installation and a consistent protective barrier around the tube's surface, enhancing durability without interfering with system function. Chemical Composition of SS 430 – Ferritic Stainless Steel • Carbon (C): ≤ 0.12% • Manganese (Mn): ≤ 1.00% • Phosphorus (P): ≤ 0.040% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): ≤ 0.75% • Iron (Fe): Balance Uses • Boiler Tube Surface Protection – Shields tubes in low to moderate temperature zones from flue gas corrosion, ash abrasion, and thermal scaling. • Air Preheater Tubing – Guards against dust erosion in regenerative air preheaters and gas-to-air heat transfer zones. • Economizer Tube Protection – Used in downstream sections of boilers where lower temperatures allow for effective use of ferritic steels. • Steam Line Shields – Protects low-pressure steam tubing and condensate lines in systems not requiring austenitic stainless steel grades. • Heat Exchanger Outer Shells – Provides an extra layer of protection in air-cooled or shell-side applications exposed to mechanical wear. Features • Good Oxidation Resistance – Performs reliably in oxidizing conditions up to 815°C, ideal for flue gas exposure and dry ash environments. • Ferritic Structure – Offers better thermal conductivity and resistance to thermal expansion than austenitic grades, reducing distortion risk. • Corrosion Resistance – Resists corrosion from atmospheric moisture, flue gas condensates, and other mildly aggressive compounds. • Cost-Effective – Offers an economical alternative to higher alloy stainless steels in appropriate thermal zones. • Precision Fit – Half-round design enables quick installation and conforms closely to tube diameters for optimal protection. • Surface Finish Options – Supplied in bright annealed, pickled, or passivated finishes based on operational requirements. • Custom Fabrication – Available in a range of wall thicknesses, diameters, and lengths to meet plant-specific installation demands. Applications • Thermal Power Stations – Shields economizer and air preheater tubes from dust-laden exhaust gas erosion and moderate thermal stress. • Cement and Lime Kilns – Used to protect heat recovery and cooler tubes from dry ash abrasion in hot air ducts. • Food Processing Boilers – Applied in steam systems requiring corrosion resistance and thermal control under hygienic conditions. • HVAC and Utility Boilers – Installed in auxiliary boilers where conditions do not require high-alloy materials but demand durability. • Pulp and Paper Mills – Protects lower furnace zone tubes and stack-side economizers from condensate corrosion and soot accumulation. • Sugar and Distillery Plants – Guards process steam and heat recovery tubes from ash and scale in biomass and bagasse-fired units. Conclusion The SS 430 Half Round Tube Shield by Ladhani Metal Corporation is a durable, cost-efficient solution for protecting tubing systems in environments where moderate corrosion resistance, good oxidation behavior, and thermal stability are essential. It is best suited for dry, low to mid-temperature gas flow areas where the mechanical and thermal loads are not extreme. The ferritic stainless steel structure provides a favorable balance of performance and economy, particularly in large-scale power and process plants. With precision manufacturing, tailored dimensions, and reliable service, Ladhani Metal Corporation delivers proven tube protection technology trusted across multiple industries. For custom orders, sizing assistance, or to request a technical quote, please contact Ladhani Metal Corporation.

Send Message
product image
Stainless Steel Flanges

DIN 2634 stainless steel flanges PN 25 are precision-engineered weld neck flanges designed and manufactured in accordance with the DIN 2634 standard. These flanges are suitable for high-pressure pipeline systems operating up to 25 bar (362 psi), providing robust and secure connections for a variety of critical industrial applications. Constructed from high-quality stainless steel grades such as 304, 316, and 321, these flanges offer excellent mechanical properties, enhanced corrosion resistance, and dependable performance in aggressive service conditions. Ladhani Metal Corporation is a globally recognized manufacturer and supplier of stainless steel flanges, known for delivering high-precision products that meet stringent international quality and dimensional standards. Each flange undergoes rigorous testing and quality checks to ensure optimal performance, safety, and longevity under high-pressure conditions. Pressure Rating: • PN 25 (25 bar / 362 psi): Engineered for high-pressure environments requiring reinforced flange connections with reliable resistance to corrosion and mechanical stress. Flange Type: • Weld Neck Flanges Incorporating a long tapered hub, weld neck flanges help maintain pipe alignment, reduce stress concentration at the weld joint, and enable smooth fluid flow with minimal turbulence. • Flat Face (FF) Flanges Ideal for systems utilizing soft gaskets or cast components, flat face flanges promote consistent gasket compression and sealing integrity. Stainless Steel Grades and Typical Composition: Stainless Steel 304 • Chromium (Cr): 18.0 – 20.0% • Nickel (Ni): 8.0 – 10.5% • Carbon (C): ≤ 0.08% (304), ≤ 0.03% (304L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Suitable for general-purpose piping systems in environments with moderate corrosion exposure, including potable water and light-duty process lines. Stainless Steel 316 • Chromium (Cr): 16.0 – 18.0% • Nickel (Ni): 10.0 – 14.0% • Molybdenum (Mo): 2.0 – 3.0% • Carbon (C): ≤ 0.08% (316), ≤ 0.03% (316L) • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Ideal for systems exposed to chlorides, cleaning agents, or other corrosive substances such as in chemical processing, pharmaceuticals, and marine environments. Stainless Steel 321 • Chromium (Cr): 17.0 – 19.0% • Nickel (Ni): 9.0 – 12.0% • Titanium (Ti): ≥ 5 × C (typically 0.20 – 0.70%) • Carbon (C): ≤ 0.08% • Manganese (Mn): ≤ 2.0% • Silicon (Si): ≤ 1.0% • Phosphorus (P): ≤ 0.045% • Sulfur (S): ≤ 0.03% • Iron (Fe): Balance Applications: Frequently used in high-temperature services such as thermal processing equipment, exhaust systems, and heat exchangers due to its stability against intergranular corrosion. Applications of DIN 2634 Stainless Steel Flanges PN 25: • Chemical Processing Units Handles higher operating pressures in systems transporting acids, alkalis, and solvents. • Marine and Offshore Installations Resistant to pressure fluctuations and saltwater corrosion in offshore piping networks. • Pharmaceutical and Biotech Plants Used in clean process environments where both pressure integrity and corrosion resistance are critical. • Industrial Steam and Thermal Systems Suitable for steam distribution and thermal expansion pipelines operating under high pressure. • Power Generation Facilities Applied in turbine piping, heat recovery systems, and pressurized cooling water circuits. Key Features: • Manufactured to DIN 2634 dimensional and pressure specifications • PN 25 pressure rating supports high-pressure operation • Weld neck design ensures leak-tight, stress-resistant connections • Available in stainless steel grades 304, 316, 321 and their low-carbon variants • Superior resistance to high-temperature corrosion and chemical attack • Long-term mechanical strength and fatigue resistance • Custom sizes, finishes, and pressure ratings available upon request Conclusion: DIN 2634 stainless steel flanges PN 25 from Ladhani Metal Corporation are engineered for high-performance use in high-pressure industrial environments where safety, corrosion resistance, and durability are paramount. These flanges are ideal for chemical, marine, thermal, and high-purity applications requiring strong, leak-resistant, and corrosion-resistant connections. For technical support, customized solutions, or pricing details, contact Ladhani Metal Corporation today.

Send Message
product image
Super duplex flanges

DIN 2630 Super Duplex flanges PN 2.5 are precision-manufactured weld neck flanges produced according to the DIN 2630 standard, designed for low-pressure applications up to 2.5 bar (36.25 psi). These flanges are made from Super Duplex stainless steel alloys such as UNS S32750, which combine exceptional strength with outstanding resistance to pitting, crevice corrosion, and stress corrosion cracking. Engineered for highly corrosive environments, Super Duplex flanges provide reliable performance in low-pressure piping systems exposed to seawater, chemical agents, and extreme conditions. Ladhani Metal Corporation is a leading global supplier and manufacturer of Super Duplex flanges, known for delivering high-quality, precision-engineered products. Our DIN 2630 PN 2.5 Super Duplex weld neck flanges are widely used in offshore oil and gas, chemical processing, marine, and desalination industries where durability and corrosion resistance are paramount. Each flange undergoes stringent quality inspections to ensure compliance with international standards and customer specifications. Pressure Rating: • PN 2.5 (2.5 bar / 36.25 psi): Suitable for low-pressure systems requiring superior material properties for corrosion and mechanical resistance. Flange Type: • Weld Neck Flanges Designed with a long tapered hub to optimize stress distribution and reduce turbulence, ensuring structural integrity and smooth fluid flow in critical piping applications. • Flat Face (FF) Flanges Flat face flanges provide uniform gasket compression, ideal for mating with cast components or soft gasket materials in low-pressure settings. Super Duplex Grade and Full Composition: Super Duplex 2507 (UNS S32750) • Chromium (Cr): 24.0 – 26.0% • Nickel (Ni): 6.0 – 8.0% • Molybdenum (Mo): 3.0 – 5.0% • Nitrogen (N): 0.24 – 0.32% • Manganese (Mn): ≤ 1.2% • Silicon (Si): ≤ 0.8% • Carbon (C): ≤ 0.03% • Iron (Fe): Balance Applications: Offers exceptional resistance to chloride-induced corrosion, stress corrosion cracking, and pitting, combined with high mechanical strength. Widely used in offshore platforms, chemical tanks, heat exchangers, and seawater systems. Applications of DIN 2630 Super Duplex Flanges PN 2.5: • Offshore Oil and Gas Ideal for piping systems exposed to seawater, sour gas, and corrosive environments on offshore rigs and platforms. • Chemical Processing Used in handling aggressive chemicals and chloride-rich process fluids under low-pressure conditions. • Desalination Plants Suitable for brine and seawater systems requiring high corrosion resistance and mechanical strength. • Marine Industry Applied in seawater cooling, ballast, and exhaust systems where durability against corrosion is critical. Key Features: • Manufactured in accordance with DIN 2630 standards • PN 2.5 pressure class designed for low-pressure applications • Weld neck design ensures optimal stress handling and reduced turbulence • Flat face option for effective gasket sealing with soft materials • Made from Super Duplex 2507 alloy for superior corrosion and mechanical properties • High strength-to-weight ratio and excellent resistance to chloride and stress corrosion • Custom sizes, finishes, and specifications available upon request Conclusion: DIN 2630 Super Duplex Flanges PN 2.5 from Ladhani Metal Corporation offer a robust solution for low-pressure piping systems operating in highly corrosive and demanding environments. Combining high strength and outstanding corrosion resistance, these flanges are trusted in offshore, chemical, marine, and desalination applications. For customized solutions, technical support, or pricing inquiries, contact Ladhani Metal Corporation.

Send Message

Still searching for
large amount?