Chennai
+919029362692

'highstrength properties construction'

Items tagged with 'highstrength properties construction'

product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. DC07 DIN EN 10130 1.0873 The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality. DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength. The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry. The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. DC06 DIN EN 10130 1.0873 The special deep-drawing grade DC06 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the requirements and test methods for cold-rolled products used in various industrial applications, especially where high demands are placed on formability and surface quality. DC06 is an ultra-low carbon steel characterized by outstanding cold formability. The chemical composition of DC06 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC06 contains a maximum of 0.01% carbon, a maximum of 0.20% manganese and only minimal traces of phosphorus and sulphur. This small amount of alloying elements contributes to the steel’s exceptional formability and weldability. The mechanical properties of DC06 are also clearly defined. The material has a maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. In addition, DC06 has an elongation at break of at least 40%, which underlines its excellent formability. These properties make DC06 particularly suitable for the production of complex and precise components that require high formability, such as deep-drawn body parts in the automotive industry or sophisticated components in the household appliance industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of the end user. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC06. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC06, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC06 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC06 therefore retains its outstanding cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC06. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC06 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC06 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on outstanding formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC06 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC05 DIN EN 10130 1.0312 St 15-03 The special deep-drawing grade DC05 is specified in accordance with the DIN EN 10130 standard, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products used in numerous industrial applications, particularly where exceptional formability and excellent surface quality are required. DC05 is a low-carbon steel that is characterized by its excellent cold formability. The chemical composition of DC05 is strictly controlled to ensure that the material has the desired mechanical properties. The carbon content in DC05 is typically a maximum of 0.02 %, while the manganese content is a maximum of 0.25 %. This composition promotes the high formability and weldability of the steel. The mechanical properties of DC05 are characterized by a low yield strength of maximum 150 MPa and a tensile strength between 270 and 350 MPa. An outstanding feature of DC05 is its high elongation at break of at least 38 %, which illustrates its excellent formability. These properties make DC05 ideal for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or sophisticated components in the electrical industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC05. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC05, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC05 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC05 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC05. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC05 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC05 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC05 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITU STANDARD MATERIAL NO. OLD DESIGNATION DC03 DIN EN 10130 1.0347 St 13-03 The deep drawing grade DC03 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard defines the technical requirements and test methods for cold-rolled products used in various industrial applications, particularly where high demands are placed on surface quality and mechanical properties. DC03 is a low-carbon steel characterized by excellent cold formability. The chemical composition of DC03 is precisely defined to ensure that the material has the required mechanical properties. Typically, DC03 contains a maximum of 0.10% carbon, a maximum of 0.45% manganese and traces of phosphorus and sulphur. This small amount of alloying elements contributes to the good formability and weldability of the steel. The mechanical properties of DC03 are also clearly defined. The material has a yield strength of at least 140 MPa and a tensile strength of between 270 and 370 MPa. In addition, DC03 has an elongation at break of at least 34%, which underlines its excellent formability. These properties make DC03 particularly suitable for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or household appliances. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the deep-drawing grade DC03. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC03, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC03 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC03 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC03. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC03 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the deep-drawing grade DC03 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC03 is a reliable and high-quality material for numerous industrial applications. Cold-rolled flat steel DC03, produced in accordance with the DIN EN 10130 and DIN EN 10152 standards, offers a number of advantages for applications in the cold forming process. While DIN EN 10130 defines the basic requirements for chemical composition, mechanical properties and surface quality, DIN EN 10152 extends these specifications to include specific conditions for electrolytically galvanized products that offer additional corrosion protection. Both standards together ensure that DC03 is a versatile material with high quality and durability.

Send Message
product image
Super Duplex Flanges

DIN 2634 super duplex steel flanges PN 25 are high-performance weld neck flanges designed in accordance with the DIN 2634 standard. These flanges are engineered for high-pressure systems operating up to 25 bar (362 psi) and are manufactured from premium super duplex stainless steel grades. Known for their superior strength, excellent corrosion resistance, and enhanced resistance to stress corrosion cracking and pitting, super duplex flanges are ideally suited for demanding industrial environments. Their robust mechanical properties make them a reliable choice for aggressive service conditions and high-pressure applications. Ladhani Metal Corporation is a global leader in the manufacturing and supply of super duplex steel flanges. With advanced production facilities, precision engineering capabilities, and rigorous quality assurance practices, the company ensures that each flange meets the highest standards of safety, durability, and performance under extreme conditions. Pressure Rating: • PN 25 (25 bar / 362 psi): Designed for systems requiring high strength and exceptional corrosion resistance under elevated pressure conditions. Flange Type: • Weld Neck Flanges Featuring a tapered hub design, weld neck flanges deliver optimal stress distribution and secure, leak-free connections in systems exposed to thermal and mechanical loading. • Flat Face (FF) Flanges Recommended for use with softer gasket materials or systems incorporating cast iron components, flat face flanges provide uniform gasket compression and reliable sealing. Super Duplex Steel Grades and Typical Composition: Super Duplex Steel (UNS S32750 / S32760) – Ferritic-Austenitic Stainless Steel • Chromium (Cr): 24.0 – 26.0% • Nickel (Ni): 6.0 – 8.0% • Molybdenum (Mo): 3.0 – 5.0% • Nitrogen (N): 0.2 – 0.3% • Iron (Fe): Balance Applications: Widely used in environments where high strength, corrosion resistance, and resistance to chloride-induced stress corrosion cracking are essential, such as offshore platforms, chemical plants, and desalination facilities. Applications of DIN 2634 Super Duplex Steel Flanges PN 25: • Offshore and Subsea Installations Withstand chloride-rich marine environments, offering long-term durability and resistance to seawater corrosion. • Chemical and Petrochemical Processing Suitable for handling aggressive chemicals, acids, and solvents under high pressure and temperature conditions. • Desalination and Water Treatment Plants Perform reliably in saline and brine-rich environments with superior resistance to pitting and crevice corrosion. • Power Generation and Heat Exchangers Offer excellent performance in high-temperature, high-pressure applications requiring strength and corrosion protection. • Pulp and Paper Industry Operate effectively in harsh chemical environments including bleach and acidic processing streams. Key Features: • Manufactured to DIN 2634 specifications for dimensional accuracy and pressure handling • PN 25 pressure class supports high-performance applications • Superior resistance to localized corrosion including pitting and stress corrosion cracking • High strength-to-weight ratio and excellent mechanical properties • Weld neck design ensures structural integrity and resistance to fatigue • Available in both UNS S32750 and S32760 super duplex grades • Customizable in size, pressure class, and surface finish upon request Conclusion: DIN 2634 super duplex steel flanges PN 25 from Ladhani Metal Corporation are engineered to deliver top-tier performance in environments where mechanical strength and corrosion resistance are non-negotiable. Their robust construction and excellent durability make them ideal for marine, chemical, and industrial applications operating under high pressure. For detailed specifications, project consultations, or a custom quote, contact Ladhani Metal Corporation today.

Send Message
product image
Monel flanges

DIN 2634 monel flanges PN 25 are high-performance weld neck flanges manufactured in accordance with the DIN 2634 standard. Specifically engineered for high-pressure applications up to 25 bar (362 psi), these flanges are made from premium Monel alloys, offering excellent corrosion resistance, high strength, and durability in harsh environments. Their robust construction makes them ideal for applications involving aggressive chemical media and seawater where conventional metal flanges may degrade. Ladhani Metal Corporation is a trusted global manufacturer and supplier of Monel flanges, known for advanced manufacturing capabilities, precision machining, and strict adherence to international quality standards. Each flange undergoes thorough inspection and testing to ensure long-term reliability, safety, and resistance to extreme operating conditions. Pressure Rating: • PN 25 (25 bar / 362 psi): Designed for high-pressure systems requiring corrosion-resistant and mechanically robust flange connections. Flange Type: • Weld Neck Flanges Featuring an extended tapered hub, weld neck flanges provide excellent stress distribution at the base, ensuring strong and leak-proof joints in systems exposed to high pressure and thermal cycling. • Flat Face (FF) Flanges Ideal for use with softer gasket materials or in systems connecting to cast components, flat face flanges offer consistent and uniform gasket compression. Monel Grades and Typical Composition: Monel 400 (UNS N04400) – Nickel-Copper Alloy • Nickel (Ni): 63% minimum • Copper (Cu): 28-34% • Iron (Fe): 2.5% maximum • Manganese (Mn): 2.0% maximum • Carbon (C): 0.30% maximum Applications: Preferred in seawater and saltwater service, chemical processing, and marine equipment where excellent corrosion resistance in oxidizing and reducing environments is required. Monel K500 (UNS N05500) – Nickel-Copper Alloy with Additional Strengthening Elements • Nickel (Ni): 63% minimum • Copper (Cu): 28-34% • Iron (Fe): 2.5% maximum • Manganese (Mn): 2.0% maximum • Aluminum (Al) and Titanium (Ti): Added for age hardening Applications: Used in high-strength marine and chemical environments requiring enhanced mechanical properties and corrosion resistance. Applications of DIN 2634 Monel Flanges PN 25: • Offshore and Marine Systems Resists corrosion from seawater, brine, and marine atmospheres while maintaining strength under pressure. • Chemical and Petrochemical Processing Ideal for transporting corrosive media such as acids, alkalis, and chloride solutions at elevated pressures. • Desalination Plants Performs reliably in saltwater treatment and high-pressure water processing systems. • Power Generation Used in systems requiring resistance to erosion and corrosion in high-temperature steam and cooling circuits. • Pharmaceutical and Food Processing Applied in hygienic environments requiring corrosion resistance and chemical inertness. Key Features: • Manufactured in accordance with DIN 2634 dimensional and pressure requirements • PN 25 pressure rating supports high-pressure applications • Excellent resistance to corrosion, erosion, and stress corrosion cracking • Weld neck configuration ensures strong, vibration-resistant joints • Available in Monel 400 and Monel K500 alloys • Custom sizes, pressure classes, and surface finishes available upon request Conclusion: DIN 2634 monel flanges PN 25 from Ladhani Metal Corporation are engineered for demanding conditions where corrosion resistance, mechanical strength, and pressure integrity are essential. These Monel flanges provide long-term durability and reliable performance for advanced applications in marine, chemical, power generation, and industrial systems. For technical consultations, specialized requirements, or pricing information, contact Ladhani Metal Corporation today.

Send Message
product image
Titanium flanges

DIN 2633 titanium flanges PN 16 are precision-engineered weld neck flanges manufactured in accordance with the DIN 2633 standard. These flanges are designed for medium to high-pressure applications up to 16 bar (232 psi), delivering strong, lightweight, and corrosion-resistant connections in highly demanding pipeline environments. Constructed from premium-grade titanium alloys such as Grade 2 and Grade 5, they offer unmatched corrosion resistance, low density, and excellent mechanical properties, making them ideal for aggressive and weight-sensitive industrial applications. Ladhani Metal Corporation is a globally recognized manufacturer and supplier of titanium flanges, known for its technical expertise, product reliability, and adherence to stringent international specifications. Each flange undergoes meticulous quality checks to meet all applicable safety and performance standards. Pressure Rating: • PN 16 (16 bar / 232 psi): Designed for pipeline systems requiring secure, leak-free connections and outstanding corrosion protection under moderate pressure conditions. Flange Type: • Weld Neck Flanges Designed with an extended tapered hub to ensure superior structural support and reduce localized stress. Ideal for critical piping systems where fatigue resistance is essential. • Flat Face (FF) Flanges Provides an even sealing surface for use with softer gaskets or systems involving cast components, ensuring leak-proof performance and consistent compression. Titanium Grades and Full Composition: Titanium Grade 2 • Titanium (Ti): ≥ 98.8% • Iron (Fe): ≤ 0.30% • Oxygen (O): ≤ 0.25% • Carbon (C): ≤ 0.08% • Nitrogen (N): ≤ 0.03% • Hydrogen (H): ≤ 0.015% Applications: Preferred in desalination, chemical processing, marine, and medical applications due to its excellent corrosion resistance and biocompatibility. Titanium Grade 5 (Ti-6Al-4V) • Titanium (Ti): Balance • Aluminum (Al): 5.5 – 6.75% • Vanadium (V): 3.5 – 4.5% • Iron (Fe): ≤ 0.40% • Oxygen (O): ≤ 0.20% • Carbon (C): ≤ 0.08% • Nitrogen (N): ≤ 0.05% • Hydrogen (H): ≤ 0.015% Applications: Commonly used in aerospace, offshore, automotive, and industrial systems requiring high strength-to-weight ratio, fatigue resistance, and temperature stability. Applications of DIN 2633 Titanium Flanges PN 16: • Desalination Plants Highly resistant to seawater and chlorides, suitable for intake and discharge piping. • Chemical and Pharmaceutical Industries Used in handling reactive or highly corrosive media where stainless steel may fail. • Aerospace and Defense Ideal for weight-sensitive applications requiring structural integrity and resistance to atmospheric conditions. • Oil and Gas Reliable in offshore platforms and downhole equipment exposed to saltwater and high pressures. • Medical Equipment Manufacturing Biocompatible properties allow safe usage in hygienic and sterile processing systems. Key Features: • Precision manufactured to DIN 2633 specifications • PN 16 pressure rating for medium to high-pressure performance • Weld neck flange design ensures enhanced mechanical stability • Available in corrosion-resistant titanium grades 2 and 5 • Lightweight construction reduces overall system load • High resistance to acids, chlorides, and extreme environments • Custom dimensions, pressure classes, and finishes available on request Conclusion: DIN 2633 Titanium Flanges PN 16 from Ladhani Metal Corporation provide a high-performance solution for systems that require excellent corrosion resistance, mechanical strength, and reduced weight. With superior manufacturing precision and quality assurance, these flanges are suited for challenging environments in marine, aerospace, chemical, and medical sectors. For custom specifications, detailed technical assistance, or pricing inquiries, contact Ladhani Metal Corporation today.

Send Message
product image
Titanium flanges

DIN 2628 titanium flanges PN 250 are high-strength weld neck flanges manufactured according to the DIN 2628 standard. Specifically designed for high-pressure applications up to 250 bar (3625 psi), these flanges ensure secure, leak-free connections in systems where weight reduction, corrosion resistance, and long-term reliability are critical. Titanium flanges offer exceptional resistance to aggressive chemicals, seawater, and elevated temperatures, making them ideal for demanding industrial environments. Ladhani Metal Corporation is a globally recognized manufacturer and supplier of precision-engineered titanium flanges. Our DIN 2628 PN 250 titanium weld neck flanges are trusted in high-performance applications across aerospace, marine, chemical processing, desalination, power generation, and offshore industries for their unmatched strength-to-weight ratio, durability, and corrosion resistance. Pressure Rating: • PN 250 (250 bar / 3625 psi): Suitable for high-pressure piping systems requiring robust mechanical performance and corrosion resistance. Flange Type: • Weld Neck Flanges Designed with a tapered hub for smooth flow transition and reduced stress at the weld neck connection, ideal for high-pressure and high-temperature conditions. • Flat Face (FF) Flanges Flat face flanges ensure uniform gasket compression and are commonly used with brittle materials or cast components to prevent flange distortion. Titanium Grades and Composition: Titanium Grade 2 (UNS R50400) • Titanium (Ti): ≥ 98.9% • Iron (Fe): ≤ 0.30% • Oxygen (O): ≤ 0.25% • Carbon (C): ≤ 0.08% • Nitrogen (N): ≤ 0.03% • Hydrogen (H): ≤ 0.015% Applications: Commercially pure titanium with excellent corrosion resistance, especially in oxidizing and chloride-containing environments. Commonly used in desalination, marine, and chemical processing. Titanium Grade 5 / Ti-6Al-4V (UNS R56400) • Titanium (Ti): Balance • Aluminum (Al): 5.5 – 6.75% • Vanadium (V): 3.5 – 4.5% • Iron (Fe): ≤ 0.40% • Oxygen (O): ≤ 0.20% Applications: High-strength titanium alloy with excellent corrosion resistance and mechanical properties. Widely used in aerospace, offshore oil and gas, and high-performance industrial systems. Applications of DIN 2628 Titanium Flanges PN 250: • Aerospace and Defense Used in lightweight, high-pressure hydraulic and fuel systems requiring superior mechanical performance and corrosion resistance. • Marine and Offshore Engineering Ideal for seawater systems, ballast water treatment, and underwater piping due to titanium’s exceptional resistance to saltwater corrosion. • Chemical and Petrochemical Plants Suitable for highly corrosive and high-pressure chemical transport lines, reactors, and heat exchangers. • Desalination and Water Treatment Used in brine filtration and pressure vessels where resistance to chlorides and corrosion fatigue is essential. • Power Generation Employed in nuclear and thermal plants where high-temperature corrosion resistance and structural stability are required. Key Features: • Manufactured in accordance with DIN 2628 specifications • PN 250 pressure rating for high-pressure industrial use • Weld neck design for enhanced strength and sealing • Available in Titanium Grade 2 and Grade 5 materials • Flat face option for even gasket sealing and surface compatibility • Exceptional resistance to corrosion, chlorides, and seawater • Lightweight construction with high mechanical strength • Custom sizes, pressure classes, and finishes available upon request Conclusion: DIN 2628 Titanium Flanges PN 250 from Ladhani Metal Corporation are engineered for critical applications where high strength, pressure performance, and corrosion resistance are essential. Available in titanium Grade 2 and Grade 5, these weld neck flanges provide a reliable solution for industries operating under extreme conditions. Contact Ladhani Metal Corporation for technical support, custom specifications, or to request a quotation tailored to your project requirements.

Send Message

Still searching for
highstrength properties construction?