Thank you for writing to us. One of our executive will reach back to you through your submitted medium. In case there’s an urgency, feel free to connect over WhatsApp for faster response.
Prefer calling? Dial +919029362692 (International callers) or +919029362692 (Indian callers).
A Molybdenum Bar is a solid, rectangular or cylindrical piece of molybdenum metal, often used in industrial applications that require high strength, heat resistance, and durability. Molybdenum is a transition metal known for its excellent properties, including a high melting point, resistance to corrosion, and mechanical strength, which make it ideal for use in demanding environments.
Key Features of Molybdenum Bar:
o High Melting Point: Molybdenum bars can withstand extremely high temperatures (up to around 2,623°C or 4,753°F) without losing their structural integrity, making them perfect for high-temperature applications such as aerospace and industrial furnaces.
o Strength and Durability: Molybdenum bars exhibit superior tensile strength and resistance to deformation, ensuring long-lasting performance under mechanical stress.
o Corrosion Resistance: Molybdenum bars are highly resistant to oxidation and corrosion, even at high temperatures, which is crucial for use in harsh environments like chemical processing and high-temperature furnaces.
o Electrical and Thermal Conductivity: Molybdenum has good electrical and thermal conductivity, making it suitable for specialized applications in electronics, including filaments, electrodes, and thermocouples.
o Ductility and Workability: Although molybdenum is a hard and brittle metal at room temperature, it can be processed into various shapes and sizes, including bars, rods, and wires, through specialized manufacturing techniques.
Common Applications:
o Aerospace: Molybdenum bars are used in turbine blades, rocket nozzles, and heat shields for spacecraft due to their ability to perform under extreme heat.
o Electronics and Electrical: Molybdenum bars are used in filaments, cathodes, and electrodes in electronic devices due to their excellent electrical conductivity and high melting point.
o Metallurgy and Manufacturing: Molybdenum is a key component in high-strength steel alloys, making it useful in manufacturing tools, cutting equipment, and industrial machinery.
o Chemical Processing: Due to its resistance to corrosive environments, molybdenum bars are used in the construction of reactors, heat exchangers, and other chemical processing equipment.
Ladhani Metal Corporation's molybdenum bars are manufactured with strict quality controls and adhere to international standards to ensure optimal performance in demanding application
A pure tungsten bar rod is a solid, cylindrical piece of tungsten metal, typically used in various high-performance industrial and scientific applications. Tungsten is renowned for its exceptional physical properties, which make it an ideal material for extreme conditions. Here's a more detailed description:
Key Characteristics of a Pure Tungsten Bar Rod:
Material Composition:
99.95% Tungsten (W): A pure tungsten rod is composed entirely of tungsten, without any alloys or significant impurities. This ensures the rod has the full range of tungsten's advantageous properties.
Melting Point:
Tungsten's melting point is extremely high at 3,422°C (6,192°F), which makes it ideal for high-temperature applications, such as aerospace and military uses.
Strength and Durability:
The tungsten rod is extremely strong and wear-resistant. It has a tensile strength of around 1510 MPa, making it suitable for heavy-duty, high-stress applications.
Corrosion Resistance:
Pure tungsten rods exhibit strong resistance to corrosion, oxidation, and other forms of environmental degradation, even at elevated temperatures.
Uses of Pure Tungsten Bar Rods:
Aerospace & Defense:
Tungsten rods are used in applications like rocket nozzles, spacecraft components, and military hardware. Their high density and ability to withstand extreme temperatures make them valuable in these fields.
Medical Applications:
Tungsten rods are employed in radiation shielding and in medical imaging devices like X-ray machines, where their high density helps to absorb harmful radiation.
Machining & Manufacturing:
Tungsten rods are used as tools or as part of tooling systems for machining metals, particularly in high-speed or high-precision operations.
Specialty Manufacturing:
Tungsten rods are often used in the production of custom components that need to operate in harsh environments, such as semiconductor manufacturing or nuclear reactors.
A pure tungsten block is a solid, dense piece of tungsten metal, characterized by its high melting point, exceptional strength, and remarkable density. Tungsten (chemical symbol W), is a transition metal known for being one of the toughest and most heat-resistant elements, with a range of industrial and scientific applications due to its unique properties.
Key Characteristics:
· High Density: Tungsten has one of the highest densities of any metal, approximately 19.3 g/cm³. This means a pure tungsten block is very heavy for its size, making it useful for applications requiring high mass in compact forms.
· High Melting Point: Tungsten has the highest melting point of any element, at 3,422°C (6,192°F). This allows pure tungsten blocks to withstand extremely high temperatures without losing their structural integrity.
· Hardness and Strength: Tungsten is incredibly strong and hard, with a hardness rating of about 7.5 on the Mohs scale. This makes it resistant to wear, scratching, and other forms of mechanical stress. It is also known for its ability to retain strength at elevated temperatures.
· Corrosion Resistance: Pure tungsten is highly resistant to oxidation and corrosion, even at high temperatures. It is not prone to rusting or tarnishing, making it ideal for use in harsh chemical environments.
· Electrical and Thermal Conductivity: Tungsten has good electrical conductivity, though not as high as metals like copper or silver. Its high thermal conductivity also makes it ideal for dissipating heat in industrial and scientific applications.
Applications:
· Aerospace and Defense: Tungsten is used in various high-performance components like rocket nozzles, military armor-piercing projectiles, and heavy-duty aerospace parts.
· Radiation Shielding: Tungsten's high density makes it an effective material for radiation shielding, particularly in X-ray machines, nuclear reactors, and medical equipment.
· Heavy Machinery: Tungsten blocks are used in counterweights and ballast for cranes, aircraft, and other machinery due to their density.
· Industrial Tools: Tungsten is used in the production of cutting tools, dies, and drills, especially in industries that require materials with high hardness and wear resistance.
QUALITY STANDARD MATERIAL NO.
DC07 DIN EN 10130 1.0873
The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality.
DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength.
The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry.
The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications.
The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material.
DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm.
The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07.
In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface.
The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material.
In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.
QUALITY STANDARD MATERIAL NO.
DC07 DIN EN 10130 1.0873
The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality.
DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength.
The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry.
The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications.
The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material.
DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm.
The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07.
In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface.
The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material.
In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.
Aka CAS No. 13463-67-7, Titanium (VI) oxide, Titania, Rutile, Anatase, Brookite
Titanium Dioxide Chemical
Titanium Dioxide, also referred to Titania, has a molecular formula of Ti02 and this mineral compound – a white colored, odorless solid – is available in three different forms. Rutile titanium dioxide is the most common naturally occurring form followed by the anatase form but titanium dioxide can also be produced synthetically.
Titanium dioxide is produced from either ilmenite, rutile or titanium slag. The titanium pigment is extracted by using either sulphuric acid (sulphate process) or chlorine (chloride route). The sulphate process employs simpler technology while the chloride route produces a purer product.
Titanium Dioxide – classified by CAS No. 13463-67-7 – is mined as a mineral in magmatic rocks. It is non-flammable, non-explosive and titanium dioxide is the most widely used pigment because of its brightness and refractive index.
Bulk Chemicals Pallate
Over 4 million tons of titanium dioxide are used worldwide every year for a wide array of common applications like paint, coatings, plastics, papers, ink, food (it’s often used to whiten skim milk and to enhance the flavor of nuts, seeds, soup and beer), medicine and toothpaste.
Titanium Dioxide is also used in cosmetics and skin care products as a pigment, in sunscreen and sunblock as a thickener to protect the skin from ultraviolet light.
Titanium Dioxide, believe it or not, is used to mark the white lines on the tennis courts at Wimbledon. Indeed, titanium dioxide accounts for 70% of the total production of pigments worldwide because “titanium white,” as it’s often called, is one of the whitest materials known to exist on Earth. In fact, titanium dioxide is even more reflective than diamonds!
Distributor & High Volume Supplier
CP Titanium – Commercially Pure Titanium
Titanium CP4 – Grade 1
Commercially Pure Titanium Grade 1 is the softest titanium and has the highest ductility. It has good cold forming characteristics and provides excellent corrosion resistance. It also has excellent welding properties and high impact toughness.
Applications
Architecture, Automotive Desalination, Dimensional Stable Anodes, Medical, Marine, Processing & Chlorate Manufacturing
Standards
ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, ASME SB-265, ASME SB-337, ASME SB-338
Forms Available
Bar, Flanges, Forgings, Sheet, Welding Wire
Titanium CP3 – Grade 2
Commercially Pure Titanium Grade 2 has moderate strength and excellent cold forming properties. It provides excellent welding properties and has excellent resistance to oxidation and corrosion.
Applications
Aerospace, Automotive, Chemical Processing & Chlorate Manufacturing, Desalination, Architecture, Hydro Carbon Processing, Marine, Medical, Power Generation
Standards
ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4902, ASME SB-337, ASME SB-338, AMS 4942
Forms Available
Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Welding Wire, Wire
Titanium CP2 – Grade 3
Commercially Pure Titanium Grade 3 is stronger and less formable than Titanium Grades 1 and 2. It is used in Aerospace and industrial applications that require moderate strength. Grade 3 titanium has excellent corrosion resistance.
Applications
Aerospace, Architecture, Automotive, Chemical Processing & Chlorate Manufacturing, Desalination, Hydro Carbon Processing, Marine, Medical, Power Generation,
Standards
ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4902, ASME SB-337, ASME SB-338, AMS 4942
Forms Available
Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Welding Wire, Wire
Titanium CP1 – Grade 4
Commercially Pure Titanium Grade 4 is stronger than CP Grades 2 & 3 – it can be cold formed, but has lower ductility. It has excellent corrosion resistance in a wide variety of environments. Grade 4 titanium is commonly used in Aerospace, Industrial and Medical applications where high strength is needed.
Applications
Aerospace, Chemical process, Industrial, Marine, Medical
Standards
ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4901, ASME SB-338
Forms Available
Bar, Forgings, Sheet, Welding Wire, Wire
Titanium Grade 7
Titanium Grade 7 has physical and mechanical properties equivalent to CP3 titanium or Grade 2. It has excellent welding and fabrication properties and is extremely resistant to corrosion especially from reducing acids.
Applications
Chemical Processing, Desalination, Power generation
Standards
ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASME SB-265, ASME SB-337, ASME SB-338,
Forms Available
Bar, Forgings, Plate, Sheet, Tube, Welding Wire, Wire
Titanium Grade 11 – CP Ti-0.15Pd
Titanium Grade 11 is highly resistant to corrosion has similar physical and mechanical properties to Titanium CP Grade 2.
Applications
Chemical processing, Desalination Power generation, Industrial
Standards
ASME SB-338
Forms Available
Tube
Titanium Based Alloys
Titanium Grade 5 – Titanium 6Al-4V
Titanium Grade 5 alloy is the most commercially available of all titanium alloys. It offers an excellent combination of high strength and toughness. Grade 5 titanium has good welding and fabrication characteristics.
Applications
Aerospace, Chemical Processing, Marine, Medical
Standards
ASME SB-265, AMS 4911, ASME SB-348, AMS 4928, AMS 4965, AMS 4967
Forms Available
Titanium Grade 6 – Titanium 5Al-2.5Sn
Titanium Grade 6 alloy offers good weldability, stability and strength at elevated temperatures.
Applications
Aerospace
Standards
ASME SB-381, AMS 4966, MIL-T-9046, MIL-T-9047, ASME SB-348, AMS 4976, AMS 4956, ASME SB-265, AMS 4910, AMS 4926
Forms Available
Bar, Forgings Plate, Sheet, Wire
Titanium Grade 9 – Titanium 3Al-2.5V
Titanium Grade 9 has medium strength that falls between Grade 4 and Grade 5. It has excellent corrosion resistance and is used in Aerospace and Industrial applications. Grade 9 Titanium can be used at higher temperatures than Grades 1 through 4. Grade 9 titanium has good cold rolling properties.
Applications
Aerospace, Automotive, Chemical processing, Consumer applications, Marine, Medical, Transportation
Standards
AMS 4943, AMS 4944, ASME SB-338
Forms Available
Bar, Forgings Plate, Sheet, Wire
Titanium Grade 12 – Ti-0.3-Mo-0.8Ni
This Titanium Grade 12 alloy is similar to Titanium Grades 2 and 3 except that Titanium Grade 12 has 0.3% molybdenum and 0.8% nickel. This offers enhanced corrosion resistance.
Applications
Chemical processing, Desalination, Power generation, Industrial
Standards
ASME SB-338
Forms Available
Tube
Titanium Grade 19 – Titanium Beta C
Titanium Grade 19 has very high strength and can be heat treated. It offers good resistance to stress and corrosion.
Applications
Aerospace Automobile
Standards
MIL-T-9046, MIL-T-9047, ASME SB-348, AMS 4957, AMS 4958, ASME SB-265
Titanium Grade 23 – Titanium 6Al-4V ELI
Titanium Grade 23 is similar to Grade 5 but has lower oxygen, nitrogen and iron. It has better ductility and fracture toughness than Titanium Grade 5.
Applications
Aerospace, Chemical Processing, Marine, Medical
Standards
AMS 4911, AMS 4928, AMS 4930, AMS 4931, AMS 4935, AMS 4965, AMS 4967, AMS 4985, AMS 4991, MIL -T-9046, MIL -T-9047, BSTA 10,11,12, BSTA 28,56,59, DIN 3.7165, AMS 4907 ELI, AMS 4930 ELI, AMS 4956 ELI, ASTM F136 ELI, UNS R56407
Forms Available
Bar, Forgings, Plate, Sheet, Welding Wire, Wire
Titanium 6Al-6V-2Sn – Titanium 6-6-2
Titanium 6-2-4-2 has excellent strength, stability, and creep resistance to temperatures as high as 550 °C.
Applications
Gas, Turbine Compressor Engine afterburner, Aerospace
Standards
AMS 4919, AMS 4952, AMS 4975, DIN 3.7164, GE B50 TF22, GE B50TF21, GE B50TF22, GE C50TF7, MIL F-83142, MIL T-9046, MIL T-9047, PWA 1220, UNS R54620
Forms Available
Bar, Plate, Sheet
Titanium 6Al-2Sn-4Zr-2Mo – Titanium 6-2-4-2
Titanium 6Al-6V-2Sn is a two-phase, Alpha Beta Alloy. It is usually used in the annealed or solution treated and aged conditions. It’s a heat treatable, high strength alloy with lower toughness and ductility than Titanium Grade 5 (6Al-4V) and it’s difficult to weld. Cold forming of Titanium 6Al-6V-2Sn is difficult because of its high strength and the large amount of spring-back that results. This grade can be welded by the inert gas shielded, fusion welding process but the heat effected area will have less ductility and toughness than the parent material. The hardness of Titanium 6-6-2 is approximately Rockwell C 36-38. This grade is primarily used for airframe and jet engine parts, rocket engine cases and ordinance components. Please call us to determine our minimum item quantity.
Applications
Airframe Components, Jet Engine Parts, Ordinance Components, Rocket Engine Cases
Standards
AMS 4981, MIL-T-9047,
Forms Available
Bar, Wire Sheet, Plate, Forgings, Fittings, Flanges, Seamless Pipe, Seamless Tube, Welded Pipe, Welded Tube
Titanium 6Al-2Sn-4Zr-6Mo – Titanium 6-2-4-6
Titanium 6Al-2Sn-4Zr-6Mo is an Alpha-Beta Alloy and it’s generally regarded as the workhorse alloy of the titanium industry. The alloy is fully heat-treatable in section sizes up to one inch and is used up to approximately 400°C (750°F). Since it is one of the most commonly used alloys (over 70% of all alloy grades melted are a sub-grade of Ti-6-4,) its uses span many aerospace engine and airframe components. Titanium 6Al-2Sn-4Zr-6Mo is also used in lots of non-aerospace applications such as marine, offshore and power generation industries. This Alpha-Beta Alloy combines good corrosion resistance and strength with weldability and fabricability. The alloy is generally available in bar form and it’s typically used in deep sour well applications. This alloy can be hot or cold formed. Please call us to determine our minimum item quantity.
Applications
Aerospace Engines, Airframe Components, Marine Applications, Offshore Applications, Power Generation Applications
Standards
AMS 4981
Forms Available
Bar, Plate, Sheet
Titanium 8Al-1Mo-1V – Titanium 8-1-1
Titanium 8Al-1Mo-1V is a near Alpha Alloy that was primarily designed for use at elevated temperatures – up to 455 degrees centigrade. It offers the highest modulus and lowest density of all Titanium alloys. It has good creep strength and it’s weldable by the inert gas fusion and resistance-welding processes. Titanium 8Al-1Mo-1V is used in the annealed condition for such applications as airframe and jet engine parts that demand high strength, superior creep resistance and a good stiffness-to-density ratio. The machinability of this grade is similar to that of Titanium 6Al-4V. Please call us to determine our minimum item quantity.
Applications
Airframe Parts, Jet Engine Parts
Standards
MIL-T-9046, MIL-T-9047, AMS 4972, AMS 4915, AMS 4973, AMS 4955, AMS 4916
Forms Available
Forgings, Bar, Sheet, Plate, Strip, Extrusions, Wire
Titanium 10V-2Fe-3Al
Titanium 10V-2Fe-3Al is a Titanium Beta Alloy. It is harder and stronger than many titanium alloys. This Titanium is a heat treatable alloy, it’s weldable and it’s easily formed. Titanium 10V-2Fe-3Al is an all Beta Alloy and is more difficult to machine than most titanium alloys. The chief problems include flank wear, spring-back and chip control. Because of these characteristics, positive rake chip grooves in combination with light hones on the cutting edge are advantageous. Please call us to determine our minimum item quantity.
Applications
Airframe Components, Compressor Blades, Disks, Wheels and Spacers
Standards
AMS 4983, AMS 4984, AMS 4986, AMS 4987
Forms Available
Bar, Forgings, Plate, Sheet, Seamless Pipe, Seamless Tube, Welded Pipe, Welded Tube, Wire
Titanium 15V-3Cr-3Sn-3Al
This Metastable-Beta Alloy is used primarily in sheet metal form. It is age-hardenable and highly cold-formable. Titanium 15V-3-3-3 is often used to replace hot-formed Titanium Grade 5 (6Al-4V) sheet. It can also be produced as foil and is an excellent alloy for castings. For aerospace applications, this grade is often specified as AMS 4914. Please call to determine the minimum item quantity.
Applications
Aerospace Tank Applications, Airframe Applications, Castings, Fasteners High Strength Hydraulic Tubing
Standards
AMS 4914, ASTM B265
Forms Available
Sheet, Foil
Titanium Alpha Alloys
Commercially pure titanium and alpha alloys of titanium are non-heat treatable and have very good welding characteristics.
Applications
Cryogenic applications, Airplane parts, Chemical processing equipment
Standards
AMS 4973, AMS 4976, AMS 4924, AMS 4972, MIL-T-9047, AMS 4910, ASTM B265, GR-6 MIL-T9046, AMS 4909, AMS 4915/4916, AMS 4966, AMS 4924, AMS 4973, AMS 4933, MIL-T-81556A A-1, MIL-T-81556A A-2, MIL-T-81556A A-4
Forms Available
Bar, Forgings, Plate, Sheet Extrusions
Titanium Beta Alloys
Titanium Beta or near Beta Alloys are:
Fully heat treatable Generally weldable
Capable of high strengths Possess good creep resistance up to intermediate temperatures
In the solution treated condition, excellent formability can be expected from Beta Alloys
Titanium Beta Alloys are ideal for sporing applications. Common Titanium Beta Alloys include:
Ti3Al8V6Cr4Mo4Zr
ASTM Grade 19
Ti-3Al-8V-6Cr-4Mo-4Zr
AMS 4983, 4984, 4987
Ti-10V-2Fe-3Al
ASTM Grade 21
Ti-15Mo-3Nb-3Al-2Si
AMS 4914
Ti-15V-3Cr-3Sn-3Al
The Metastable Titanium Beta Alloys are heat treatable by solution treatment and ageing. Fully stable beta alloys can only be annealed.
Applications
Aerospace,
Standards
AMS 4914, AMS 4983, AMS 4984, AMS 4987, ASTM Grade 19, ASTM Grade 21
Forms Available
Forgings
Titanium Alpha-Beta Alloys
Titanium Alpha Beta alloys are heat treatable and most of them are also weldable. The typical properties of Titanium Alpha Beta Alloys are:
Medium to high strength levels;
High temperature creep strength is not as less than most alpha alloys;
Limited cold forming but hot forming qualities are normally good;
The most commonly used Titanium Alpha Beta Alloy is Ti 6Al-4V. Titanium 6Al-4V has been developed in many variations of the basic formulation for numerous and widely differing applications.
Other Titanium Alpha Beta Alloys include: 6Al-4V-ELI 6Al-6V-2Sn 6Al-2Sn-4Zr-2Mo 3Al-2.5V 8Mn
Applications
Aircraft and aircraft turbine parts, Chemical processing equipment, Marine hardware, Prosthetic devices
Standards
ASME SB-265, AMS 4911, ASME SB-348, AMS 4928, AMS 4965, AMS 4967, AMS 4981, MIL-T-9047, AMS 4930, AMS 4971, AMS 4907, ASTM F 136, MIL-T-9046, AMS 4918, DMS1879/2237, AMS 4908, AMS 4943, ASTM B348, AMS 4975, MIL-T-9047 G, AMS 4928, BMS 7-348, DMS 1570, AMS 4976, AMS 4920, AMS 4934
Forms Available
Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Wire
Titanium Metals
Titanium Specifications
Titanium Grades
CP4 – Grade 1
CP3- Grade 2
Titanium CP2 – Grade 3
CP1 – Grade 4
Grade 7
Grade 11 – CP Ti-0.15Pd
Grade 5 – Titanium 6Al-4V
Grade 6 – Titanium 5Al-2.5Sn
Grade 9 – Titanium 3Al-2.5V
Grade 12 – Ti-0.3-Mo-0.8Ni
Grade 19 – Titanium Beta C
Grade 23 – Titanium 6Al-4V ELI
6Al-6V-2Sn
6Al-2Sn-4Zr-2Mo
6Al-2Sn-4Zr-6Mo
8Al-1Mo-1V
10V-2Fe-3Al
15V-3Cr-3Sn-3Al
Alpha Alloys
Beta Alloys
Alpha-Beta Alloys
Titanium Dioxide TiO2
Titanium Applications
Titanium Sheets
Titanium Plates
Titanium Wire
Titanium Tubes & Tubing
Titanium Round Bar
Titanium Pipe
We stock and sell Commercially Pure Titanium and Titanium Alloys in a broad range of forms and sizes. We can deliver production quantities in 90-120 days.
close
Request A Quote
close
Home Services Industries Resources About Contact Blog RFQ Sitemap
QUALITY STANDARD MATERIAL NO.
DC07 DIN EN 10130 1.0873
The super deep drawing grade DC07 is specified according to the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard ensures that the technical requirements and test methods for cold-rolled products are met, which are of great importance in various industrial applications, especially where the highest demands are placed on formability and surface quality.
DC07 is a particularly low-carbon steel characterized by exceptional cold formability. The chemical composition of DC07 is strictly controlled to ensure its excellent mechanical properties. The carbon content in DC07 is typically a maximum of 0.01 %, while the manganese content is a maximum of 0.20 %. The addition of micro-alloyed elements such as titanium and niobium can further improve formability and strength.
The mechanical properties of DC07 are characterized by a very low maximum yield strength of 120 MPa and a tensile strength of between 270 and 350 MPa. A particularly outstanding property of DC07 is its high elongation at break of at least 40 %, which underlines the excellent formability of the material. These properties make DC07 ideal for the production of complex components that require extremely high precision and surface quality, such as deep-drawn body parts in the automotive industry or highly complex components in the electronics industry.
The DIN EN 10130 standard also specifies precise tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensuring consistently high product quality and meeting the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications.
The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled steel flat products for cold forming, including the super deep-drawing grade DC07. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material.
DC07, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm.
The chemical composition and mechanical properties of the base material DC07 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC07 therefore retains its exceptional cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for non-galvanized DC07.
In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface.
The use of DC07 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material.
In summary, it can be said that the DC07 super deep-drawing grade offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on excellent formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC07 is a reliable and high-quality material for numerous industrial applications.