Chennai
+919029362692

'exceptional physical properties'

Items tagged with 'exceptional physical properties'

product image

Aka CAS No. 13463-67-7, Titanium (VI) oxide, Titania, Rutile, Anatase, Brookite Titanium Dioxide Chemical Titanium Dioxide, also referred to Titania, has a molecular formula of Ti02 and this mineral compound – a white colored, odorless solid – is available in three different forms. Rutile titanium dioxide is the most common naturally occurring form followed by the anatase form but titanium dioxide can also be produced synthetically. Titanium dioxide is produced from either ilmenite, rutile or titanium slag. The titanium pigment is extracted by using either sulphuric acid (sulphate process) or chlorine (chloride route). The sulphate process employs simpler technology while the chloride route produces a purer product. Titanium Dioxide – classified by CAS No. 13463-67-7 – is mined as a mineral in magmatic rocks. It is non-flammable, non-explosive and titanium dioxide is the most widely used pigment because of its brightness and refractive index. Bulk Chemicals Pallate Over 4 million tons of titanium dioxide are used worldwide every year for a wide array of common applications like paint, coatings, plastics, papers, ink, food (it’s often used to whiten skim milk and to enhance the flavor of nuts, seeds, soup and beer), medicine and toothpaste. Titanium Dioxide is also used in cosmetics and skin care products as a pigment, in sunscreen and sunblock as a thickener to protect the skin from ultraviolet light. Titanium Dioxide, believe it or not, is used to mark the white lines on the tennis courts at Wimbledon. Indeed, titanium dioxide accounts for 70% of the total production of pigments worldwide because “titanium white,” as it’s often called, is one of the whitest materials known to exist on Earth. In fact, titanium dioxide is even more reflective than diamonds!

Send Message
product image
Boiler Half Round Tube Shield

Ladhani Metal Corporation offers 1Cr25Ni20Si2 Boiler Half Round Tube Shields engineered for superior protection of boiler tubes in extremely high-temperature and abrasive service environments. Manufactured from a heat-resistant austenitic stainless steel alloy with high chromium, nickel, and silicon content, 1Cr25Ni20Si2 delivers exceptional resistance to oxidation, carburization, and high-temperature scaling. The added silicon improves anti-oxidation properties and enhances structural stability during prolonged thermal exposure. These shields are precision-formed into a half-round profile to ensure accurate coverage of straight boiler tube sections. They provide a durable physical barrier against flue gas erosion, soot blower impact, and particle-laden gas flow, significantly extending the operational life of boiler tubes. Ladhani Metal Corporation manufactures, supplies, and exports 1Cr25Ni20Si2 Boiler Half Round Tube Shields in a wide range of sizes, thicknesses, and lengths, catering to both domestic and international markets. 1Cr25Ni20Si2 Grade Chemical Composition – Heat Resistant Austenitic Stainless Steel • Carbon (C): ≤ 0.12% • Manganese (Mn): ≤ 2.00% • Phosphorus (P): ≤ 0.035% • Sulfur (S): ≤ 0.030% • Silicon (Si): 1.50 – 2.50% • Chromium (Cr): 24.00 – 26.00% • Nickel (Ni): 19.00 – 22.00% • Iron (Fe): Balance Uses • Shields straight boiler tubes in superheaters, reheaters, and economizers • Protects against oxidation, scaling, and particulate erosion • Suitable for carburizing and high-silicon demanding environments • Extends tube life in power generation and process heating units Features • Enhanced oxidation resistance – Silicon addition boosts scale resistance at extreme temperatures • Superior thermal stability – Maintains mechanical integrity during prolonged heat exposure • Precision-engineered profile – Ensures a secure and accurate fit over boiler tubes • Flexible installation – Can be welded, clamped, or banded based on site requirements • Export-ready – Compliant with international quality and dimensional standards Applications • Thermal power stations – Protects superheater and reheater tubes from oxidation and erosion • Waste heat boilers – Guards tubes in severe heat recovery operations • Petrochemical and refinery heaters – Resists carburization in furnace conditions • Metallurgy and cement industries – Provides reliable tube protection under abrasive, high-heat gas flows Conclusion The 1Cr25Ni20Si2 Boiler Half Round Tube Shield from Ladhani Metal Corporation is designed for extreme service conditions where oxidation, scaling, and high-temperature wear are major concerns. With its silicon-enhanced heat-resistant alloy composition and precise manufacturing, it ensures prolonged boiler tube life and reduced downtime. Available in customized sizes for both domestic and export orders, these shields offer dependable performance in the world’s toughest boiler and furnace environments. For specifications and order inquiries, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Salem #Erode #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Hassan #Cuttack #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Gaya #Muzaffarpur#halftubeshield #utypehalftubeshield #tubeshieldexporter #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponentExport #FabricatedProducts #SteelDealer #IndustrialSupplyIndia #BoilerTubeFittings #TubeShieldingSolutions #HalfTubeCover #HeatExchangerShield

Send Message
product image
industrial rings

Tungsten-Copper Industrial Ring is a high-performance component made from an alloy of tungsten (W) and copper (Cu), combining the exceptional properties of both metals. This industrial ring is specifically designed for applications requiring both high strength and excellent thermal and electrical conductivity. The unique characteristics of tungsten-copper alloys make these rings suitable for use in industries such as aerospace, electronics, manufacturing, and energy, where they can withstand extreme conditions. Properties: · Density: Tungsten-copper industrial rings are very dense, with a specific gravity ranging between 17 g/cm³ and 19 g/cm³. The high density of the tungsten gives the ring its strength and mass, making it suitable for applications where weight or stability is important. · Color and Appearance: Tungsten-copper industrial rings generally have a metallic gray or brownish appearance due to the tungsten content, and the copper gives the ring a slightly reddish hue, depending on the specific ratio of the metals. · Size and Shape: These rings are typically available in various diameters and thicknesses depending on the application. Custom dimensions and designs can be produced to meet specific performance or size requirements. The rings can be precisely machined or cast to the desired specifications. · Strength: Tungsten provides the ring with high tensile strength, making it resistant to wear, deformation, and mechanical stress. The copper content improves overall impact resistance, reducing the risk of cracking under extreme conditions. · Hardness: Tungsten has a high level of hardness, which allows the industrial ring to resist abrasions, indentations, and general wear. However, copper improves the machinability of the alloy, enabling more complex shapes and designs. Applications of Tungsten-Copper Industrial Ring: · Heat Shields: Due to their high thermal conductivity and strength, tungsten-copper industrial rings are used in aerospace applications like heat shields and rocket nozzles, which must withstand extreme temperatures during flight. · Counterweights: Tungsten's high density makes it ideal for use in counterweights for aerospace structures or systems where weight distribution is critical. · Electrical Contacts: Tungsten-copper industrial rings are used in high-voltage electrical contacts due to their electrical conductivity and ability to manage heat dissipation. They are found in commutators, switches, and connectors where both conductivity and wear resistance are essential. · Heat Sinks: The thermal conductivity of tungsten-copper alloys makes these rings ideal for heat dissipation in power electronics or LED lights, where managing heat is crucial for performance. · Welding Electrodes: Tungsten-copper industrial rings can also be used in welding electrodes, particularly for arc welding applications where the material must endure extreme temperatures and provide stable electrical conduction.

Send Message
product image
block

A pure tungsten block is a solid, dense piece of tungsten metal, characterized by its high melting point, exceptional strength, and remarkable density. Tungsten (chemical symbol W), is a transition metal known for being one of the toughest and most heat-resistant elements, with a range of industrial and scientific applications due to its unique properties. Key Characteristics: · High Density: Tungsten has one of the highest densities of any metal, approximately 19.3 g/cm³. This means a pure tungsten block is very heavy for its size, making it useful for applications requiring high mass in compact forms. · High Melting Point: Tungsten has the highest melting point of any element, at 3,422°C (6,192°F). This allows pure tungsten blocks to withstand extremely high temperatures without losing their structural integrity. · Hardness and Strength: Tungsten is incredibly strong and hard, with a hardness rating of about 7.5 on the Mohs scale. This makes it resistant to wear, scratching, and other forms of mechanical stress. It is also known for its ability to retain strength at elevated temperatures. · Corrosion Resistance: Pure tungsten is highly resistant to oxidation and corrosion, even at high temperatures. It is not prone to rusting or tarnishing, making it ideal for use in harsh chemical environments. · Electrical and Thermal Conductivity: Tungsten has good electrical conductivity, though not as high as metals like copper or silver. Its high thermal conductivity also makes it ideal for dissipating heat in industrial and scientific applications. Applications: · Aerospace and Defense: Tungsten is used in various high-performance components like rocket nozzles, military armor-piercing projectiles, and heavy-duty aerospace parts. · Radiation Shielding: Tungsten's high density makes it an effective material for radiation shielding, particularly in X-ray machines, nuclear reactors, and medical equipment. · Heavy Machinery: Tungsten blocks are used in counterweights and ballast for cranes, aircraft, and other machinery due to their density. · Industrial Tools: Tungsten is used in the production of cutting tools, dies, and drills, especially in industries that require materials with high hardness and wear resistance.

Send Message
product image
disc

A tungsten alloy disc is a circular piece made from a composite material primarily composed of tungsten and other metals such as nickel, iron, or copper. Known for its exceptional density, high melting point, and resistance to wear and corrosion, tungsten alloy discs are commonly used in applications that require high performance under extreme conditions. These include industries like aerospace, military, automotive, and manufacturing, where the disc's ability to withstand high temperatures and pressures is crucial. The tungsten alloy disc often has a smooth, polished surface and can be machined to precise dimensions. It is valued for its strength, heavy weight, and versatility in applications such as radiation shielding, counterweights, ballast, and tooling components. The material's unique properties also make it ideal for applications that involve high-speed rotations, heavy loads, or precision cutting. Features of Tungsten Alloy Discs: High Density: Tungsten alloys are among the heaviest and densest materials available, making these discs ideal for use in applications requiring weight and mass, such as counterweights and radiation shielding. Outstanding Strength and Toughness: Tungsten alloy discs exhibit remarkable tensile strength, making them highly durable and capable of withstanding extreme mechanical stress and high temperatures. Thermal Stability: Tungsten alloys maintain their integrity at elevated temperatures, making these discs ideal for high-temperature environments, such as aerospace and defense applications. Corrosion and Wear Resistance: The material's natural resistance to corrosion and wear ensures longevity and reliability, even in harsh chemical or abrasive environments. Precision and Customization: Tungsten Alloy Discs can be manufactured to meet exacting tolerances, allowing for customized shapes, sizes, and thicknesses to suit a wide range of applications. Applications: Aerospace and Defense: Used in counterweights, radiation shielding, and heavy-duty components. Medical: In radiation therapy equipment for shielding or as part of specialized diagnostic tools. Industrial: As components for machinery requiring high wear resistance, such as in heavy manufacturing or mining. Electronics: For parts that need high density and heat resistance.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC05 DIN EN 10130 1.0312 St 15-03 The special deep-drawing grade DC05 is specified in accordance with the DIN EN 10130 standard, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products used in numerous industrial applications, particularly where exceptional formability and excellent surface quality are required. DC05 is a low-carbon steel that is characterized by its excellent cold formability. The chemical composition of DC05 is strictly controlled to ensure that the material has the desired mechanical properties. The carbon content in DC05 is typically a maximum of 0.02 %, while the manganese content is a maximum of 0.25 %. This composition promotes the high formability and weldability of the steel. The mechanical properties of DC05 are characterized by a low yield strength of maximum 150 MPa and a tensile strength between 270 and 350 MPa. An outstanding feature of DC05 is its high elongation at break of at least 38 %, which illustrates its excellent formability. These properties make DC05 ideal for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or sophisticated components in the electrical industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC05. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC05, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC05 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC05 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC05. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC05 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC05 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC05 is a reliable and high-quality material for numerous industrial applications.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC05 DIN EN 10130 1.0312 St 15-03 The special deep-drawing grade DC05 is specified in accordance with the DIN EN 10130 standard, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products used in numerous industrial applications, particularly where exceptional formability and excellent surface quality are required. DC05 is a low-carbon steel that is characterized by its excellent cold formability. The chemical composition of DC05 is strictly controlled to ensure that the material has the desired mechanical properties. The carbon content in DC05 is typically a maximum of 0.02 %, while the manganese content is a maximum of 0.25 %. This composition promotes the high formability and weldability of the steel. The mechanical properties of DC05 are characterized by a low yield strength of maximum 150 MPa and a tensile strength between 270 and 350 MPa. An outstanding feature of DC05 is its high elongation at break of at least 38 %, which illustrates its excellent formability. These properties make DC05 ideal for the production of complex components that require high precision and surface quality, such as body parts in the automotive industry or sophisticated components in the electrical industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to glossy, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC05. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC05, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC05 remain unchanged after galvanizing and meet the requirements of DIN EN 10130. DC05 therefore retains its excellent cold formability and mechanical performance. The yield strength, tensile strength and elongation at break also remain in the same range as for ungalvanized DC05. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC05 in accordance with DIN EN 10152 is widespread in the automotive industry, in the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. In summary, it can be said that the special deep-drawing grade DC05 offers a wide range of applications in accordance with both DIN EN 10130 and DIN EN 10152. While DIN EN 10130 focuses on high formability and surface quality, DIN EN 10152 supplements these properties with improved corrosion resistance thanks to the zinc coating. Both standards ensure that DC05 is a reliable and high-quality material for numerous industrial applications.

Send Message

Still searching for
exceptional physical properties?