Chennai
+919029362692

'complex forms making'

Items tagged with 'complex forms making'

product image
Titanium Gr 2 Flanges

Product Name: Titanium Gr 2 flanges Standard: ASME B16.5 Material: Gr2 Unit Price: $25usd/pc-$85usd/pc Sealing Surface: RF, FF, TG, RJ etc. Size: NPS 1/2 - NPS 24(DN 10 - 2000) Pressure: 150#-2500# Grade 2 titanium is the most commonly requested in the pipeline valve and fittings industry, with high strength and corrosion resistance. Titanium is generally used in applications that require high temperature and high pressure service but are lighter in weight. Some good examples are components in the aerospace industry (airframe frames) and state-of-the-art equipment in the military. Given its excellent corrosion resistance in marine and chloride applications, titanium flanges are also popular as offshore drilling components and heat exchanger components. When you need a metal with good overall formability and workability, please choose titanium. It has the capability of hot or cold forming while maintaining its excellent mechanical properties. For transportation to your work site, it is good to know that titanium is much lighter than regular steel (about 40-45% lighter). Although not as light as aluminum, our titanium flanges and fittings are easier to handle during welding and installation. Chemical composition (Wt%) ASTM No. Fe max O max N max C max H max Pd Al Bal Grade 2 0.3 0.25 0.03 0.1 0.015 - - Ti Physical Properties (Min) ASTM Grade Alloy Composition Tensile Strength Yield Strength Elongation min % ksi Mpa ksi Mpa Grade 2 Unalloyed Ti ("Pure") 50A -CP2 64 440 46 320 18

Send Message
product image
titanium tank and vessel

At Ladhani Metal Corporation, we rely on advanced, durable, and highly resistant Titanium Tanks and Vessels in our state-of-the-art gold and silver refining processes to meet the highest industry standards of efficiency and quality. Titanium, known for its exceptional strength, lightweight nature, and superior corrosion resistance, is the perfect material for handling the challenging and chemically aggressive processes involved in precious metal refining. Titanium Tanks and Vessels are critical components in ensuring the refined metals remain pure and free from contaminants, which is a paramount concern in the production of high-quality gold and silver. These tanks and vessels are custom-designed to withstand the demanding conditions of refining, where harsh chemicals, high temperatures, and reactive agents are frequently used. Key Features and Advantages of Titanium Tanks and Vessels: Unmatched Corrosion Resistance: Titanium's resistance to corrosion in both oxidizing and reducing environments makes it ideal for gold and silver refining operations. High Strength and Durability: Titanium exhibits extraordinary strength even at high temperatures, allowing our refining plant to maintain operational efficiency without concerns about material failure. Precision and Purity Assurance: Titanium's non-reactive nature ensures that it does not introduce any impurities into the refining solution, which is critical when producing high-purity gold and silver. As precious metals are refined, any contaminant introduced through the process can significantly reduce the quality of the final product. Titanium's inert properties prevent such risks, allowing for the highest-quality output. Optimal Design for Efficient Operations: The Titanium Tanks and Vessels are designed with precision to optimize chemical mixing, temperature regulation, and overall process control, contributing to the efficiency of the refining operations. Their advanced engineering ensures minimal energy loss and greater process consistency, which translates to better yields and faster turnaround times in the refining cycle. Applications in Gold and Silver Refining: Electrolytic Refining: Titanium vessels are used to hold the electrolyte solutions during electrorefining processes, which are crucial for separating pure gold and silver from impurities. The non-reactive properties of titanium ensure that the refining chemicals do not degrade the container or contaminate the solution. Aqua Regia Processing: When gold is dissolved in aqua regia for further separation and purification, the highly corrosive nature of this acid mixture makes titanium an ideal material for containing the solution without causing any damage to the vessel. Conclusion: The Titanium Tanks and Vessels at Ladhani Metal Corporation are integral to the efficiency, safety, and success of our precious metal refining operations. By leveraging the unique properties of titanium, we ensure that our gold and silver refining processes produce the highest purity metals while maintaining cost-effectiveness, operational longevity, and minimal maintenance requirements. Our commitment to using the best materials in the industry translates to superior results and a refined product that meets the exacting standards of our clients.

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These rods are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defense, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
split pins

Ladhani Metal Corporation offers premium DIN 94 Aluminium Alloy products, meticulously manufactured to meet the highest industry standards. In compliance with DIN 94, a globally recognized standard for aluminium alloys, these materials provide superior strength, light weight, and corrosion resistance. Ideal for a wide range of applications, including automotive, aerospace, construction, and industrial machinery. Key Features: Lightweight and Strong: Known for its excellent strength-to-weight ratio, aluminium alloy is significantly lighter than steel but provides comparable or superior strength in many applications. It offers exceptional mechanical properties, including tensile strength, yield strength, and hardness, while remaining much lighter than other metals, making it ideal for applications where weight reduction is crucial, such as in the aerospace and automotive industries. Corrosion Resistance: it is resistant to corrosion. The alloy naturally forms an oxide layer on its surface, providing a protective barrier that resists oxidation. This makes it highly suitable for use in marine, coastal, and other harsh environments where exposure to moisture and chemicals can be a concern. Excellent Machinability and Formability: It offers good weldability, along with the ability to be extruded, forged, and shaped into complex forms, making it a versatile material for manufacturers across various sectors. The alloy can be easily processed into sheets, plates, rods, and bars, enabling its use in numerous production techniques. Thermal and Electrical Conductivity: Aluminium alloys are known for their high thermal and electrical conductivity. It is ideal for applications that require effective heat dissipation or electrical conductivity, such as in electrical components, heat exchangers, and radiators. Applications: Automotive: Components such as engine parts, wheels, frames, and body panels where weight reduction is a priority without compromising strength. Aerospace: Structural components, wing sections, and fuselage parts, benefiting from the alloy's lightweight and high-strength properties. Marine: Used in boat hulls, ship parts, and offshore structures due to its excellent resistance to corrosion in saltwater environments. Construction and Engineering: Aluminium alloy is used for window frames, roofing, structural beams, and other architectural elements, benefiting from its strength and weather-resistant properties. Our Domestic reach is unlimited and we supply to this following cities Ahmedabad, Amritsar, Aurangabad, Bangalore, Bhopal, Chandigarh, Chennai, Coimbatore, Dhanbad, Faridabad, Ghaziabad, Guwahati, Gwalior, Howrah, Hyderabad, Indore, Jabalpur, Jaipur, Jodhpur, Kanpur, Kolkata, Kota, Lucknow, Ludhiana, Madurai, Meerut, Mumbai, Nagpur, Nashik, Navi Mumbai, New Delhi, Patna, Pune, Raipur, Rajkot, Ranchi, Solapur, Srinagar, Surat, Thane, Vadodara, Varanasi, Vijayawada, Visakhapatnam, Hubballi, Tiruchirappalli, Bareilly, Moradabad, Mysore, Gurgaon, Aligarh, Jalandhar, Bhubaneswar We export to following Countries: Russia, Canada, United States, China, Brazil, Australia, Argentina, Kazakhstan, Algeria, Denmark, Saudi Arabia, Mexico, Indonesia, Iran, Mongolia, Peru, South Africa, Colombia, Ethiopia, Bolivia, Egypt, Venezuela, Turkey, Chile, Myanmar, France, Ukraine, Madagascar, Botswana, Kenya, Thailand, Spain, Sweden, Uzbekistan, Morocco, Paraguay, Zimbabwe, Norway, Japan, Germany, Republic of the Congo, Finland, Vietnam, Malaysia, Poland, Oman, Italy, Philippines, Ecuador, New Zealand, United Kingdom, Guinea, Uganda, Nepal, Bangladesh

Send Message
product image
Titanium Sheet For Knife Making

Product name:Titanium sheet for knife making Grades: Gr5(Ti6Al4V) Standard: ASTM B265/ASME B265 Dimension: Thickness*Width:200-3000mm*Length:500-6000mm Supply status: Annealed(M) Package: Carton or plywood case Usually, the titanium alloy plate used for knife is Grade 5 (Ti6Al4V). This grade titanium material is one of the most widely used materials in titanium alloys. It has the same advantages as pure titanium: corrosion resistance, non-toxic, light weight, etc. There are also many of other advantages over pure titanium: higher hardness, tensile strength, yield strength and elongation. Can meet the needs of making knife. Titanium is a good material for knives if your main concern is light weight and corrosion resistance. Titanium knives are ideal for anyone who spends a lot of time around water or performs jobs that require frequent blade cleaning. Product name:Titanium sheet for knife making Grades: Gr5(Ti6Al4V) Standard: ASTM B265/ASME B265 Dimension: Thickness1-150mm*Width:200-3000mm*Length:500-6000mm Supply status: Annealed(M) Package: Carton or plywood case. MTC: EN10204.3.1 certificate MOQ : 10kgs Titanium plate applications

Send Message
product image
Half Round Shield for Boiler Tube

Ladhani Metal Corporation offers SS 410 Half Round Tube Shields designed to safeguard boiler tubes in power plants, HRSGs, WHRBs, and industrial steam systems. Boiler tubes are exposed to continuous erosion, high-temperature flue gases, and abrasive ash particles that can shorten their service life. Manufactured from martensitic stainless steel grade SS 410, these shields provide high mechanical strength, moderate corrosion resistance, and reliable oxidation resistance, making them suitable for high-temperature boiler operations. Function of Boiler Tubes • Carry water or steam through heating sections of the boiler • Continuously exposed to erosion, oxidation, and abrasive flue gases • Require Half Round Tube Shields in high-velocity and soot blower impact zones Ladhani Metal Corporation manufactures, supplies, and exports SS 410 Half Round Tube Shields in various lengths, diameters, and thicknesses to meet both domestic and international requirements. SS 410 Grade Chemical Composition – Martensitic Stainless Steel • Carbon (C): 0.08 – 0.15% • Manganese (Mn): ≤ 1.00% • Phosphorus (P): ≤ 0.040% • Sulfur (S): ≤ 0.030% • Silicon (Si): ≤ 1.00% • Chromium (Cr): 11.50 – 13.50% • Nickel (Ni): ≤ 0.75% • Iron (Fe): Balance Applications: Suitable for reheater and superheater sections in thermal power plants, waste heat recovery boilers, and industrial steam systems requiring high strength with moderate corrosion and oxidation resistance. Uses • Shields boiler tubes against erosion from high-velocity flue gases • Protects tubes from soot blower erosion and abrasive particles • Extends service life of steam circuit components in high-temperature boilers • Commonly used in utility boilers, WHRBs, HRSGs, and process boilers Features • High mechanical strength at elevated temperatures • Reliable oxidation resistance in hot boiler environments • Moderate corrosion resistance under steam and flue gas exposure • Cost-effective protection with precision-engineered fit Applications • Power generation boilers – Durable protection for reheater and superheater tubes • Waste heat recovery boilers – Guards tubes from high-velocity particle erosion • Industrial steam systems – Performs well in medium-to-high temperature conditions • Process boilers – Ensures extended operational life under erosive atmospheres Conclusion The SS 410 Half Round Tube Shield for Boiler Tubes by Ladhani Metal Corporation provides a strong, durable, and cost-effective solution for boiler tube protection in erosive and high-temperature environments. With high mechanical strength and reliable oxidation resistance, these shields extend tube life and minimize downtime. Available in a wide range of export-ready specifications, they are trusted by industries worldwide. For supply and technical inquiries, contact Ladhani Metal Corporation. #Mumbai #Pune #Ahmedabad #Vadodara #Surat #Rajkot #Jamnagar #Bharuch #Ankleshwar #Vapi #Delhi #Faridabad #Ghaziabad #Noida #Gurugram #Chennai #Coimbatore #Tiruchirappalli #Hyderabad #Visakhapatnam #Vijayawada #Bangalore #Mangalore #Mysore #Kolkata #Durgapur #Asansol #Bhubaneswar #Rourkela #Raipur #Bhilai #Bilaspur #Nagpur #Nashik #Aurangabad #Indore #Bhopal #Jabalpur #Kanpur #Lucknow #Varanasi #Jaipur #Kota #Udaipur #Jodhpur #Chandigarh #Ludhiana #Jalandhar #Haridwar #Dehradun #Agra #Meerut #Aligarh #Moradabad #Bareilly #Mathura #Gwalior #Rewa #Satna #Sagar #Ujjain #Ratlam #Solapur #Kolhapur #Amravati #Akola #Jalgaon #Latur #Sangli #Nanded #Gandhinagar #Bhavnagar #Mehsana #Surendranagar #Junagadh #Nadiad #Nizamabad #Karimnagar #Warangal #Kurnool #Nellore #Tirupati #Madurai #Tirunelveli #Thoothukudi #Belgaum #Hubli #Tumkur #Sambalpur #Jamshedpur #Ranchi #Dhanbad #Patna #Muzaffarpur#halftubeshield #utypehalftubeshield #tubeshieldexporter #TubeShield #HalfTubeShield #SSHalfRoundShield #BoilerTubeShield #BoilerShield #TubeProtection #Tubeshieldmanufacturer #BoilerTubeProtection #SSTubeShield #MetalIndustry #SteelFabrication #IndustrialShielding #SS304Shield #SS316Shield #StainlessSteelShield #WeldOnShield #WeldedTubeShield #TubeCladding #BoilerTubeSleeve #TubeSleeve #MetalFabrication #PowerPlantSupplies #RefineryEquipment #ProcessIndustry #MetalComponent #TubeShieldForBoilers #BoilerParts #SteelSolutions #TubeShieldManufacturer #TubeShieldSupplier #SSShielding #IndustrialTubeShield #BoilerTubeGuard #CustomMetalParts #SteelIndustryIndia #MetalEngineering #HeavyIndustrySupply #StainlessSteelIndia #SteelExporters #MetalComponentExport #FabricatedProducts #SteelDealer #IndustrialSupplyIndia #BoilerTubeFittings #TubeShieldingSolutions #HalfTubeCover #HeatExchangerShield #HalfRoundReheaterShield #ReheaterTubeShield #BoilerReheaterProtection #PowerPlantTubeShield #BoilerErosionShield #SteamBoilerTubeShield #HighTempTubeShield #BoilerWearProtection

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message
product image
COLD ROLLED SHEET

QUALITY STANDARD MATERIAL NO. OLD DESIGNATION DC04 DIN EN 10130 1.0338 St 14-03 The special deep-drawing grade DC04 is specified in accordance with the standard DIN EN 10130, which focuses on cold-rolled flat products made of soft steels for cold forming. This standard specifies the technical requirements and test methods for cold-rolled products that are important in numerous industrial applications, especially where high formability and excellent surface quality are required. DC04 is a low-carbon steel that impresses with its exceptional cold formability. The chemical composition of DC04 is precisely balanced to ensure that the material has the desired mechanical properties. The carbon content in DC04 is typically a maximum of 0.08 %, while the manganese content is a maximum of 0.40 %. This composition supports the high formability and weldability of the steel, making it ideal for demanding forming processes. The mechanical properties of DC04 are characterized by a low yield strength of maximum 210 MPa and a tensile strength between 270 and 350 MPa. Particularly noteworthy is the high elongation at break of at least 38%, which illustrates the excellent formability of the material. These properties make DC04 a preferred choice for the production of complex components that require high precision and surface quality, such as car body components in the automotive industry or filigree parts in the electronics industry. The DIN EN 10130 standard also specifies the tolerances for dimensions, shape and surface finish. These tolerances are crucial to ensure consistently high product quality and to meet the requirements of end users. The surface of the cold-rolled flat products can be supplied in various qualities, from matt to high-gloss, to meet the specific requirements of different applications. The DIN EN 10152 standard specifies electrolytically galvanized, cold-rolled flat steel products for cold forming, including the special deep-drawing grade DC04. This standard defines the requirements for the zinc coating and the basic mechanical properties of the base material. DC04, when electrolytically galvanized in accordance with DIN EN 10152, is given an additional corrosion protection layer of zinc. This layer protects the material from oxidative influences and significantly increases the service life of the components made from it. The zinc coating can be applied in various thicknesses, depending on the specific requirements of the application. Typical coating thicknesses range from 5 to 20 µm. The chemical composition and mechanical properties of the base material DC04 remain unchanged even after galvanizing and meet the requirements of DIN EN 10130. DC04 therefore retains its excellent cold formability and mechanical performance. In addition to mechanical performance, the quality of the zinc coating is of central importance. The DIN EN 10152 standard specifies the requirements for the uniformity of the coating, the adhesive strength of the zinc and the surface quality. These requirements ensure that the galvanized products offer high corrosion resistance and an aesthetically pleasing surface. The use of DC04 in accordance with DIN EN 10152 is widespread in the automotive industry, the construction industry and in the manufacture of household appliances, where improved corrosion resistance is required in addition to high formability. Electrolytic galvanizing offers optimum protection here without impairing the excellent mechanical properties of the base material. DC04 and DC01 are both cold-rolled, unalloyed quality steels that are used for various industrial applications. While DC01 serves as the standard grade for general cold forming processes, DC04 is characterized by improved deep-drawing properties and higher ductility. This comparison highlights the differences between the two materials in terms of chemical composition, mechanical properties and typical applications. Chemical composition The chemical composition influences the formability and weldability of the steel. Both steels are made of carbon steel, but DC04 has a lower carbon content, which supports its improved cold formability. Thanks to the lower carbon and Sulphur content, DC04 offers improved deep-drawing capability as less intergranular embrittlement occurs. Mechanical properties The mechanical properties are decisive for the forming processes and the behavior of the steel under load. DC04 has a lower yield strength and higher elongation, which makes the material easier to form. The lower yield strength and increased minimum elongation of DC04 make this material ideal for demanding forming processes such as deep drawing.

Send Message

Still searching for
complex forms making?