Chennai
+919029362692

'bars suitable'

Items tagged with 'bars suitable'

product image
titanium tank and vessel

At Ladhani Metal Corporation, we rely on advanced, durable, and highly resistant Titanium Tanks and Vessels in our state-of-the-art gold and silver refining processes to meet the highest industry standards of efficiency and quality. Titanium, known for its exceptional strength, lightweight nature, and superior corrosion resistance, is the perfect material for handling the challenging and chemically aggressive processes involved in precious metal refining. Titanium Tanks and Vessels are critical components in ensuring the refined metals remain pure and free from contaminants, which is a paramount concern in the production of high-quality gold and silver. These tanks and vessels are custom-designed to withstand the demanding conditions of refining, where harsh chemicals, high temperatures, and reactive agents are frequently used. Key Features and Advantages of Titanium Tanks and Vessels: Unmatched Corrosion Resistance: Titanium's resistance to corrosion in both oxidizing and reducing environments makes it ideal for gold and silver refining operations. High Strength and Durability: Titanium exhibits extraordinary strength even at high temperatures, allowing our refining plant to maintain operational efficiency without concerns about material failure. Precision and Purity Assurance: Titanium's non-reactive nature ensures that it does not introduce any impurities into the refining solution, which is critical when producing high-purity gold and silver. As precious metals are refined, any contaminant introduced through the process can significantly reduce the quality of the final product. Titanium's inert properties prevent such risks, allowing for the highest-quality output. Optimal Design for Efficient Operations: The Titanium Tanks and Vessels are designed with precision to optimize chemical mixing, temperature regulation, and overall process control, contributing to the efficiency of the refining operations. Their advanced engineering ensures minimal energy loss and greater process consistency, which translates to better yields and faster turnaround times in the refining cycle. Applications in Gold and Silver Refining: Electrolytic Refining: Titanium vessels are used to hold the electrolyte solutions during electrorefining processes, which are crucial for separating pure gold and silver from impurities. The non-reactive properties of titanium ensure that the refining chemicals do not degrade the container or contaminate the solution. Aqua Regia Processing: When gold is dissolved in aqua regia for further separation and purification, the highly corrosive nature of this acid mixture makes titanium an ideal material for containing the solution without causing any damage to the vessel. Conclusion: The Titanium Tanks and Vessels at Ladhani Metal Corporation are integral to the efficiency, safety, and success of our precious metal refining operations. By leveraging the unique properties of titanium, we ensure that our gold and silver refining processes produce the highest purity metals while maintaining cost-effectiveness, operational longevity, and minimal maintenance requirements. Our commitment to using the best materials in the industry translates to superior results and a refined product that meets the exacting standards of our clients.

Send Message
product image
industrial ring

A Molybdenum Industrial Ring is a circular component made from molybdenum metal, designed for use in demanding industrial applications where high strength, thermal stability, and corrosion resistance are crucial. Molybdenum, known for its exceptional high-temperature properties and durability, makes these industrial rings highly suitable for environments that require reliable, long-lasting performance. Key Features of Molybdenum Industrial Rings: o High Melting Point: Molybdenum has a melting point of around 2,623°C (4,753°F), which enables it to withstand extremely high temperatures without degrading. This makes molybdenum industrial rings ideal for use in furnaces, reactors, and other high-temperature processes. o Strength and Durability: Molybdenum industrial rings are characterized by their excellent mechanical properties, including superior tensile strength and resistance to wear and deformation. This ensures that the rings maintain their shape and functionality under stress. o Corrosion and Oxidation Resistance: Molybdenum's resistance to corrosion, especially at high temperatures, makes these industrial rings suitable for use in harsh chemical environments, including petrochemical, nuclear, and other processing industries where exposure to aggressive substances is common. o Thermal and Electrical Conductivity: Molybdenum has good thermal and electrical conductivity, allowing it to be used effectively in applications where efficient heat transfer and electrical performance are required. This makes molybdenum industrial rings useful in electronics and energy industries. o Precision and Customization: Molybdenum industrial rings can be manufactured with precise dimensions, surface finishes, and tolerances to meet the specific requirements of each application. This makes them versatile and adaptable for a wide range of industrial needs. Common Applications: o Aerospace Industry: Molybdenum industrial rings are used in aerospace components such as turbine blades, rocket engine parts, and heat shields due to their ability to withstand high temperatures and mechanical stresses. o Chemical and Petrochemical Industries: Molybdenum rings are used in reactors, heat exchangers, and other chemical processing equipment where resistance to corrosion and high-temperature conditions is essential. o Electronics and Electrical Applications: Molybdenum industrial rings are employed in electronic devices, electrical contacts, and filaments, where their thermal and electrical conductivity properties are advantageous. o Steel Manufacturing and Metallurgy: Molybdenum rings are used in steel alloys to improve their strength, durability, and resistance to heat. They are also used in manufacturing molds and tools that require precision and high-temperature performance. o Energy Sector: In the nuclear and energy industries, molybdenum industrial rings are used in components that must endure high radiation and thermal conditions.

Send Message
product image
industrial ring

A pure tungsten industrial ring is a heavy-duty ring made from 99.95% pure tungsten metal, designed primarily for use in industrial settings or for specialized applications. These rings combine the exceptional physical properties of tungsten—such as its strength, heat resistance, and durability—with a rugged, functional design suited for demanding environments. Key Characteristics of a Pure Tungsten Industrial Ring: 99.95% Pure Tungsten (W): The industrial ring is made from pure tungsten, meaning it contains no alloys or impurities. This ensures the ring has the full range of tungsten's natural advantages, such as superior strength and resilience. High Strength and Durability: Tungsten is one of the hardest metals, with a high hardness rating on the Mohs scale (around 8.5-9). This gives the industrial ring exceptional wear resistance and helps it withstand abrasions, impacts, and stresses over extended periods, even in the toughest conditions. Heat Resistance: Tungsten has an extremely high melting point of 3,422°C (6,192°F), making it ideal for high-temperature environments. A pure tungsten industrial ring will retain its shape and integrity even under intense heat, making it useful for industries where high heat exposure is common, such as manufacturing, aerospace, and welding. Corrosion and Oxidation Resistance: Pure tungsten is highly resistant to corrosion and oxidation, which means the industrial ring will not rust or degrade even when exposed to moisture, chemicals, or harsh environmental conditions, ensuring long-term reliability in a variety of industrial settings. Density and Weight: Tungsten is a dense material (around 19.25 g/cm³), making the ring relatively heavy compared to rings made from other materials. This weight not only gives it a substantial, solid feel but also contributes to its durability, ensuring that the ring remains functional and robust even under heavy use. Applications of Pure Tungsten Industrial Rings: Manufacturing and Machinery: Tungsten industrial rings are used in machinery, equipment, and tooling systems where components need to endure extreme wear and stress. The high strength and resistance to abrasion make tungsten an excellent material for parts subjected to constant friction or high pressure. Aerospace and Defense: Due to tungsten's strength and high heat resistance, industrial rings made from pure tungsten are used in aerospace and military applications, such as rocket nozzles, defense components, and aircraft engines, where durability and high-temperature resistance are critical. Mining and Construction: In the mining and construction industries, where equipment and tools are subjected to heavy wear and rough handling, tungsten rings are used for parts that require exceptional hardness and resilience. Heavy-Duty Industrial Use: Pure tungsten industrial rings are also used in industrial applications such as drill bits, cutting tools, counterweights, and other components where the material's density and strength are crucial to performance.

Send Message
product image
pipe/tube

A tungsten tube or pipe is a cylindrical hollow structure made from tungsten, a metal known for its exceptional hardness, high melting point, and excellent resistance to heat, corrosion, and wear. Tungsten tubes are typically created from tungsten metal or tungsten alloys and are used in a variety of industrial applications that require materials capable of withstanding extreme conditions. These tubes are commonly used in industries such as aerospace, electronics, manufacturing, and medical equipment. Tungsten tubes can be employed for purposes like radiation shielding, high-temperature environments (such as furnace components), and as structural elements in aerospace or military applications. Their high density and resistance to thermal expansion make them suitable for use in applications requiring stable and reliable performance under stress and heat. Features of Tungsten Tubes: High Temperature Resistance: Tungsten tubes can withstand extremely high temperatures without deforming or losing strength, making them suitable for high-heat environments like vacuum furnaces and aerospace applications. Corrosion and Wear Resistance: Tungsten’s natural resistance to chemical attack ensures that the tubes maintain their integrity and performance even in challenging environments. High Density: Tungsten tubes provide significant weight and mass, which makes them ideal for uses in counterweights, radiation shielding, and other applications requiring heavy, dense materials. Superior Strength: With one of the highest tensile strengths among metals, tungsten tubes maintain their form under pressure, making them durable and reliable in demanding conditions. Tungsten tubes can be precision-manufactured to various lengths, diameters, and thicknesses, with high machining capabilities that allow for customized sizes. They are often used in vacuum systems, heating elements, and components that require durability, strength, and the ability to resist wear and corrosion over long periods of use.

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message
product image
bar/rod

A tungsten alloy bar is a dense, strong, and high-melting-point metal product made primarily from tungsten combined with other metals like nickel, iron, or copper. These bars are known for their exceptional durability, resistance to heat and wear, and high density, making them ideal for applications in aerospace, defence, medical devices, and manufacturing processes. Tungsten alloy rods are commonly used for radiation shielding, electrical contacts, counterweights, and as tooling components in high-stress environments. It is produced by pressing and sintering into billets, which are worked by rolling or swaging into rod. Specific length can be supplied upon request. Key Features of Tungsten Bars: High Density: Tungsten bars are extremely dense, making them ideal for applications that require weight and mass, such as counterweights and ballast. Superior Strength: Tungsten exhibits one of the highest melting points and tensile strengths of any metal, making the bars suitable for high-stress environments. Wear and Corrosion Resistance: Tungsten's resistance to corrosion and wear ensures long-lasting performance, even in harsh industrial conditions. Heat Resistance: With its high melting point, tungsten is capable of maintaining its integrity in extreme temperature environments. We also manufacture in following grades: Type Density (g/cm³) 85W-10.5Ni-4.5Fe 15.8-16.0 90W-7NI-3FE 16.9-17.1 90W-6Ni-4Fe 16.7-17.0 91W-6Ni-3FE 17.1-17.3 92W-5Ni-3FE 17.3-17.5 92.5W-5Ni-2.5Fe 17.4-17.6 93W-4 NI-3FE 17.5-17.6 93W-4.9Ni-2.1Fe 17.5-17.6 93W-5Ni-2Fe 17.5-17.6 95W-3Ni-2Fe 17.9-18.1 95W-3.5Ni-1.5Fe 17.9-18.1 96W-3Ni-1FE 18.2-18.3 97W-2Ni-1FE 18.4-18.5 98W-1Ni-1FE 18.4-18.6 90W-6Ni-4CU 17.0-17.2 93W-5Ni-2CU 17.5-17.6

Send Message

Still searching for
bars suitable?