Chennai
+919029362692
+919029362692

'automotive aerospace marine'

Items tagged with 'automotive aerospace marine'

product image
Titanium Tubes For Heat Exchanger

Product name: Titanium Tubes For Heat Exchanger Standard:ASTM B338 Material:Grade 1 Grade 2 titanium Diameter:15mm 19.1mm 25.4mm 33.4mm 38.1mm 45mm etc. Wall thickness:1.0mm / 1.2mm Length:Max 16000mm Surface:Pickling surface/Polished Type:Seamless, welded Application:Heat Exchanger, chemical industry etc. Technique:Rolled Titanium Tubes For Heat Exchanger Titanium tubes are corrosion resistant in seawater and chlorine. It is alloyed with elements such as iron, vanadium, aluminum and molybdenum to produce strong and light alloys for industrial purposes such as chemical industry, seawater desalination plant, petrochemical, papermaking and pulp. The most common dimensions of titanium seamless or titanium welded tubes for heat exchangers and pressure vessels are od0.5 "(12.7mm), 0.63" (16mm), 0.75 "(19.05mm), 1" (25.4mm), 1.25 "(31.75mm), 1.5" (38.1mm), 1.78 "(45mm), 2" (50.8mm), etc., and wt0.02 "(0.5mm), 0.024" (0.6mm), 0.028 "(0.71mm), 0.035" (0.89mm) , 0.049 "(1.24mm), 0.11" (2.77mm), 0.125 "(3.17mm), etc. Product name Titanium tubes for heat exchanger,ASTM B338 titanium tube pipe,Seamless titanium tube,Welded titanium tubes,Titanium tube price per kg Grade Gr1 Gr2 Different types of Titanium heat exchanger tubes Seamless, Welded Standard ASME /ASTM B 338 Straightness of heat exchanger tubes 0.0015 x L. In conversion , 1 meter length OUTER DIAMETER (OD) 0.500 - 3.000 inch heat exchanger tubes manufacturer 12.7 - 76.2 mm WALL THICKNESS (WT) 0.035 - 0.220 inch 0.89 - 5.52 mm Lengths Titanium heat exchanger tubes are delivered in straight lengths up to 16.5 meters (54 ft). Titanium U-bent tubes are available on request. Manufacturing Method Seamless (Cold Drawn/Cold Rolling) Heat exchanger tubes Certified test reports ASTM / ASME A450 EN 10204: for EN 10297 nonspecified testing (only the mandatory tests), 2.2 specified testing – 3.1.B after agreement - 3.1.A, 3.1.C, 3.2 DIN 50049, - 2.2, 3.1. B Pipe Assemby Headers Pigtails Flanged Pipes Longitudinal finned Pipes and Tubes Finned Tubes Special Forgings Special designed parts acc. to drawing Welding together possible Grades of Seamless Titanium Heat Exchanger Tubes ASTM GRADE UNS NO. DIN/ EN MATERIAL CODE Grade 1 R50250 3.7025 Ti 1 Grade 2 R50400 3.7035 Ti 2 Grade 3 R50550 3.7055 Ti 3 Grade 7 R52400 3.7235 Ti 2 Pd Grade 9 R56320 3.7195 Ti Al 3 V 2,5 Grade 11 R52550 3.7225 Ti 1 Pd Grade 12 R53400 3.7105 Ti Ni 0,8 Mo 0,3

product image

Distributor & High Volume Supplier CP Titanium – Commercially Pure Titanium Titanium CP4 – Grade 1 Commercially Pure Titanium Grade 1 is the softest titanium and has the highest ductility. It has good cold forming characteristics and provides excellent corrosion resistance. It also has excellent welding properties and high impact toughness. Applications Architecture, Automotive Desalination, Dimensional Stable Anodes, Medical, Marine, Processing & Chlorate Manufacturing Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, ASME SB-265, ASME SB-337, ASME SB-338 Forms Available Bar, Flanges, Forgings, Sheet, Welding Wire Titanium CP3 – Grade 2 Commercially Pure Titanium Grade 2 has moderate strength and excellent cold forming properties. It provides excellent welding properties and has excellent resistance to oxidation and corrosion. Applications Aerospace, Automotive, Chemical Processing & Chlorate Manufacturing, Desalination, Architecture, Hydro Carbon Processing, Marine, Medical, Power Generation Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4902, ASME SB-337, ASME SB-338, AMS 4942 Forms Available Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Welding Wire, Wire Titanium CP2 – Grade 3 Commercially Pure Titanium Grade 3 is stronger and less formable than Titanium Grades 1 and 2. It is used in Aerospace and industrial applications that require moderate strength. Grade 3 titanium has excellent corrosion resistance. Applications Aerospace, Architecture, Automotive, Chemical Processing & Chlorate Manufacturing, Desalination, Hydro Carbon Processing, Marine, Medical, Power Generation, Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4902, ASME SB-337, ASME SB-338, AMS 4942 Forms Available Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Welding Wire, Wire Titanium CP1 – Grade 4 Commercially Pure Titanium Grade 4 is stronger than CP Grades 2 & 3 – it can be cold formed, but has lower ductility. It has excellent corrosion resistance in a wide variety of environments. Grade 4 titanium is commonly used in Aerospace, Industrial and Medical applications where high strength is needed. Applications Aerospace, Chemical process, Industrial, Marine, Medical Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-348, ASTM F-67, AMS 4921, ASME SB-265, AMS 4901, ASME SB-338 Forms Available Bar, Forgings, Sheet, Welding Wire, Wire Titanium Grade 7 Titanium Grade 7 has physical and mechanical properties equivalent to CP3 titanium or Grade 2. It has excellent welding and fabrication properties and is extremely resistant to corrosion especially from reducing acids. Applications Chemical Processing, Desalination, Power generation Standards ASME SB-363, ASME SB-381, ASME SB-337, ASME SB-338, ASME SB-348, ASME SB-265, ASME SB-337, ASME SB-338, Forms Available Bar, Forgings, Plate, Sheet, Tube, Welding Wire, Wire Titanium Grade 11 – CP Ti-0.15Pd Titanium Grade 11 is highly resistant to corrosion has similar physical and mechanical properties to Titanium CP Grade 2. Applications Chemical processing, Desalination Power generation, Industrial Standards ASME SB-338 Forms Available Tube Titanium Based Alloys Titanium Grade 5 – Titanium 6Al-4V Titanium Grade 5 alloy is the most commercially available of all titanium alloys. It offers an excellent combination of high strength and toughness. Grade 5 titanium has good welding and fabrication characteristics. Applications Aerospace, Chemical Processing, Marine, Medical Standards ASME SB-265, AMS 4911, ASME SB-348, AMS 4928, AMS 4965, AMS 4967 Forms Available Titanium Grade 6 – Titanium 5Al-2.5Sn Titanium Grade 6 alloy offers good weldability, stability and strength at elevated temperatures. Applications Aerospace Standards ASME SB-381, AMS 4966, MIL-T-9046, MIL-T-9047, ASME SB-348, AMS 4976, AMS 4956, ASME SB-265, AMS 4910, AMS 4926 Forms Available Bar, Forgings Plate, Sheet, Wire Titanium Grade 9 – Titanium 3Al-2.5V Titanium Grade 9 has medium strength that falls between Grade 4 and Grade 5. It has excellent corrosion resistance and is used in Aerospace and Industrial applications. Grade 9 Titanium can be used at higher temperatures than Grades 1 through 4. Grade 9 titanium has good cold rolling properties. Applications Aerospace, Automotive, Chemical processing, Consumer applications, Marine, Medical, Transportation Standards AMS 4943, AMS 4944, ASME SB-338 Forms Available Bar, Forgings Plate, Sheet, Wire Titanium Grade 12 – Ti-0.3-Mo-0.8Ni This Titanium Grade 12 alloy is similar to Titanium Grades 2 and 3 except that Titanium Grade 12 has 0.3% molybdenum and 0.8% nickel. This offers enhanced corrosion resistance. Applications Chemical processing, Desalination, Power generation, Industrial Standards ASME SB-338 Forms Available Tube Titanium Grade 19 – Titanium Beta C Titanium Grade 19 has very high strength and can be heat treated. It offers good resistance to stress and corrosion. Applications Aerospace Automobile Standards MIL-T-9046, MIL-T-9047, ASME SB-348, AMS 4957, AMS 4958, ASME SB-265 Titanium Grade 23 – Titanium 6Al-4V ELI Titanium Grade 23 is similar to Grade 5 but has lower oxygen, nitrogen and iron. It has better ductility and fracture toughness than Titanium Grade 5. Applications Aerospace, Chemical Processing, Marine, Medical Standards AMS 4911, AMS 4928, AMS 4930, AMS 4931, AMS 4935, AMS 4965, AMS 4967, AMS 4985, AMS 4991, MIL -T-9046, MIL -T-9047, BSTA 10,11,12, BSTA 28,56,59, DIN 3.7165, AMS 4907 ELI, AMS 4930 ELI, AMS 4956 ELI, ASTM F136 ELI, UNS R56407 Forms Available Bar, Forgings, Plate, Sheet, Welding Wire, Wire Titanium 6Al-6V-2Sn – Titanium 6-6-2 Titanium 6-2-4-2 has excellent strength, stability, and creep resistance to temperatures as high as 550 °C. Applications Gas, Turbine Compressor Engine afterburner, Aerospace Standards AMS 4919, AMS 4952, AMS 4975, DIN 3.7164, GE B50 TF22, GE B50TF21, GE B50TF22, GE C50TF7, MIL F-83142, MIL T-9046, MIL T-9047, PWA 1220, UNS R54620 Forms Available Bar, Plate, Sheet Titanium 6Al-2Sn-4Zr-2Mo – Titanium 6-2-4-2 Titanium 6Al-6V-2Sn is a two-phase, Alpha Beta Alloy. It is usually used in the annealed or solution treated and aged conditions. It’s a heat treatable, high strength alloy with lower toughness and ductility than Titanium Grade 5 (6Al-4V) and it’s difficult to weld. Cold forming of Titanium 6Al-6V-2Sn is difficult because of its high strength and the large amount of spring-back that results. This grade can be welded by the inert gas shielded, fusion welding process but the heat effected area will have less ductility and toughness than the parent material. The hardness of Titanium 6-6-2 is approximately Rockwell C 36-38. This grade is primarily used for airframe and jet engine parts, rocket engine cases and ordinance components. Please call us to determine our minimum item quantity. Applications Airframe Components, Jet Engine Parts, Ordinance Components, Rocket Engine Cases Standards AMS 4981, MIL-T-9047, Forms Available Bar, Wire Sheet, Plate, Forgings, Fittings, Flanges, Seamless Pipe, Seamless Tube, Welded Pipe, Welded Tube Titanium 6Al-2Sn-4Zr-6Mo – Titanium 6-2-4-6 Titanium 6Al-2Sn-4Zr-6Mo is an Alpha-Beta Alloy and it’s generally regarded as the workhorse alloy of the titanium industry. The alloy is fully heat-treatable in section sizes up to one inch and is used up to approximately 400°C (750°F). Since it is one of the most commonly used alloys (over 70% of all alloy grades melted are a sub-grade of Ti-6-4,) its uses span many aerospace engine and airframe components. Titanium 6Al-2Sn-4Zr-6Mo is also used in lots of non-aerospace applications such as marine, offshore and power generation industries. This Alpha-Beta Alloy combines good corrosion resistance and strength with weldability and fabricability. The alloy is generally available in bar form and it’s typically used in deep sour well applications. This alloy can be hot or cold formed. Please call us to determine our minimum item quantity. Applications Aerospace Engines, Airframe Components, Marine Applications, Offshore Applications, Power Generation Applications Standards AMS 4981 Forms Available Bar, Plate, Sheet Titanium 8Al-1Mo-1V – Titanium 8-1-1 Titanium 8Al-1Mo-1V is a near Alpha Alloy that was primarily designed for use at elevated temperatures – up to 455 degrees centigrade. It offers the highest modulus and lowest density of all Titanium alloys. It has good creep strength and it’s weldable by the inert gas fusion and resistance-welding processes. Titanium 8Al-1Mo-1V is used in the annealed condition for such applications as airframe and jet engine parts that demand high strength, superior creep resistance and a good stiffness-to-density ratio. The machinability of this grade is similar to that of Titanium 6Al-4V. Please call us to determine our minimum item quantity. Applications Airframe Parts, Jet Engine Parts Standards MIL-T-9046, MIL-T-9047, AMS 4972, AMS 4915, AMS 4973, AMS 4955, AMS 4916 Forms Available Forgings, Bar, Sheet, Plate, Strip, Extrusions, Wire Titanium 10V-2Fe-3Al Titanium 10V-2Fe-3Al is a Titanium Beta Alloy. It is harder and stronger than many titanium alloys. This Titanium is a heat treatable alloy, it’s weldable and it’s easily formed. Titanium 10V-2Fe-3Al is an all Beta Alloy and is more difficult to machine than most titanium alloys. The chief problems include flank wear, spring-back and chip control. Because of these characteristics, positive rake chip grooves in combination with light hones on the cutting edge are advantageous. Please call us to determine our minimum item quantity. Applications Airframe Components, Compressor Blades, Disks, Wheels and Spacers Standards AMS 4983, AMS 4984, AMS 4986, AMS 4987 Forms Available Bar, Forgings, Plate, Sheet, Seamless Pipe, Seamless Tube, Welded Pipe, Welded Tube, Wire Titanium 15V-3Cr-3Sn-3Al This Metastable-Beta Alloy is used primarily in sheet metal form. It is age-hardenable and highly cold-formable. Titanium 15V-3-3-3 is often used to replace hot-formed Titanium Grade 5 (6Al-4V) sheet. It can also be produced as foil and is an excellent alloy for castings. For aerospace applications, this grade is often specified as AMS 4914. Please call to determine the minimum item quantity. Applications Aerospace Tank Applications, Airframe Applications, Castings, Fasteners High Strength Hydraulic Tubing Standards AMS 4914, ASTM B265 Forms Available Sheet, Foil Titanium Alpha Alloys Commercially pure titanium and alpha alloys of titanium are non-heat treatable and have very good welding characteristics. Applications Cryogenic applications, Airplane parts, Chemical processing equipment Standards AMS 4973, AMS 4976, AMS 4924, AMS 4972, MIL-T-9047, AMS 4910, ASTM B265, GR-6 MIL-T9046, AMS 4909, AMS 4915/4916, AMS 4966, AMS 4924, AMS 4973, AMS 4933, MIL-T-81556A A-1, MIL-T-81556A A-2, MIL-T-81556A A-4 Forms Available Bar, Forgings, Plate, Sheet Extrusions Titanium Beta Alloys Titanium Beta or near Beta Alloys are: Fully heat treatable Generally weldable Capable of high strengths Possess good creep resistance up to intermediate temperatures In the solution treated condition, excellent formability can be expected from Beta Alloys Titanium Beta Alloys are ideal for sporing applications. Common Titanium Beta Alloys include: Ti3Al8V6Cr4Mo4Zr ASTM Grade 19 Ti-3Al-8V-6Cr-4Mo-4Zr AMS 4983, 4984, 4987 Ti-10V-2Fe-3Al ASTM Grade 21 Ti-15Mo-3Nb-3Al-2Si AMS 4914 Ti-15V-3Cr-3Sn-3Al The Metastable Titanium Beta Alloys are heat treatable by solution treatment and ageing. Fully stable beta alloys can only be annealed. Applications Aerospace, Standards AMS 4914, AMS 4983, AMS 4984, AMS 4987, ASTM Grade 19, ASTM Grade 21 Forms Available Forgings Titanium Alpha-Beta Alloys Titanium Alpha Beta alloys are heat treatable and most of them are also weldable. The typical properties of Titanium Alpha Beta Alloys are: Medium to high strength levels; High temperature creep strength is not as less than most alpha alloys; Limited cold forming but hot forming qualities are normally good; The most commonly used Titanium Alpha Beta Alloy is Ti 6Al-4V. Titanium 6Al-4V has been developed in many variations of the basic formulation for numerous and widely differing applications. Other Titanium Alpha Beta Alloys include: 6Al-4V-ELI 6Al-6V-2Sn 6Al-2Sn-4Zr-2Mo 3Al-2.5V 8Mn Applications Aircraft and aircraft turbine parts, Chemical processing equipment, Marine hardware, Prosthetic devices Standards ASME SB-265, AMS 4911, ASME SB-348, AMS 4928, AMS 4965, AMS 4967, AMS 4981, MIL-T-9047, AMS 4930, AMS 4971, AMS 4907, ASTM F 136, MIL-T-9046, AMS 4918, DMS1879/2237, AMS 4908, AMS 4943, ASTM B348, AMS 4975, MIL-T-9047 G, AMS 4928, BMS 7-348, DMS 1570, AMS 4976, AMS 4920, AMS 4934 Forms Available Bar, Fittings, Flanges, Forgings, Pipe, Plate, Sheet, Tube, Wire Titanium Metals Titanium Specifications Titanium Grades CP4 – Grade 1 CP3- Grade 2 Titanium CP2 – Grade 3 CP1 – Grade 4 Grade 7 Grade 11 – CP Ti-0.15Pd Grade 5 – Titanium 6Al-4V Grade 6 – Titanium 5Al-2.5Sn Grade 9 – Titanium 3Al-2.5V Grade 12 – Ti-0.3-Mo-0.8Ni Grade 19 – Titanium Beta C Grade 23 – Titanium 6Al-4V ELI 6Al-6V-2Sn 6Al-2Sn-4Zr-2Mo 6Al-2Sn-4Zr-6Mo 8Al-1Mo-1V 10V-2Fe-3Al 15V-3Cr-3Sn-3Al Alpha Alloys Beta Alloys Alpha-Beta Alloys Titanium Dioxide TiO2 Titanium Applications Titanium Sheets Titanium Plates Titanium Wire Titanium Tubes & Tubing Titanium Round Bar Titanium Pipe We stock and sell Commercially Pure Titanium and Titanium Alloys in a broad range of forms and sizes. We can deliver production quantities in 90-120 days. close Request A Quote close Home Services Industries Resources About Contact Blog RFQ Sitemap

product image
19mm Titanium Pipe For Heat Exchanger

Product name: 19mm Titanium pipe for heat exchanger Standard:ASTM B338 Material:Grade 1 Grade 2 titanium Diameter:19.1mm Wall thickness:1.0mm / 1.2mm Length:Max 16000mm Surface:Pickling surface/Polished Type:Seamless, welded Application:Heat Exchanger, chemical industry etc. Technique:Rolled 19mm Titanium pipe for heat exchanger Commonly used heat exchange tube size (outer diameter x wall thickness) is mainly φ 19mmx2mm, φ 25mmx2mm.5mm and φ 38mmX2mm.5mm seamless tube and φ 25mmx2mm and φ 38mmx2mm.5mm seamless tube. Standard tube length includes 1.5, 2.0, 3.0, 4.5, 6.0, 9.0m, etc. The use of small diameter can increase the heat transfer area per unit volume, compact structure, reduce metal consumption, improve the heat transfer coefficient. It is expected that the heat exchange tube of the same diameter heat exchanger is changed from φ 25mm to φ 19mm, the heat exchange area can be increased by about 40%, saving more than 20% of metal.

product image
Titanium flanges

DIN 2633 titanium flanges PN 16 are precision-engineered weld neck flanges manufactured in accordance with the DIN 2633 standard. These flanges are designed for medium to high-pressure applications up to 16 bar (232 psi), delivering strong, lightweight, and corrosion-resistant connections in highly demanding pipeline environments. Constructed from premium-grade titanium alloys such as Grade 2 and Grade 5, they offer unmatched corrosion resistance, low density, and excellent mechanical properties, making them ideal for aggressive and weight-sensitive industrial applications. Ladhani Metal Corporation is a globally recognized manufacturer and supplier of titanium flanges, known for its technical expertise, product reliability, and adherence to stringent international specifications. Each flange undergoes meticulous quality checks to meet all applicable safety and performance standards. Pressure Rating: • PN 16 (16 bar / 232 psi): Designed for pipeline systems requiring secure, leak-free connections and outstanding corrosion protection under moderate pressure conditions. Flange Type: • Weld Neck Flanges Designed with an extended tapered hub to ensure superior structural support and reduce localized stress. Ideal for critical piping systems where fatigue resistance is essential. • Flat Face (FF) Flanges Provides an even sealing surface for use with softer gaskets or systems involving cast components, ensuring leak-proof performance and consistent compression. Titanium Grades and Full Composition: Titanium Grade 2 • Titanium (Ti): ≥ 98.8% • Iron (Fe): ≤ 0.30% • Oxygen (O): ≤ 0.25% • Carbon (C): ≤ 0.08% • Nitrogen (N): ≤ 0.03% • Hydrogen (H): ≤ 0.015% Applications: Preferred in desalination, chemical processing, marine, and medical applications due to its excellent corrosion resistance and biocompatibility. Titanium Grade 5 (Ti-6Al-4V) • Titanium (Ti): Balance • Aluminum (Al): 5.5 – 6.75% • Vanadium (V): 3.5 – 4.5% • Iron (Fe): ≤ 0.40% • Oxygen (O): ≤ 0.20% • Carbon (C): ≤ 0.08% • Nitrogen (N): ≤ 0.05% • Hydrogen (H): ≤ 0.015% Applications: Commonly used in aerospace, offshore, automotive, and industrial systems requiring high strength-to-weight ratio, fatigue resistance, and temperature stability. Applications of DIN 2633 Titanium Flanges PN 16: • Desalination Plants Highly resistant to seawater and chlorides, suitable for intake and discharge piping. • Chemical and Pharmaceutical Industries Used in handling reactive or highly corrosive media where stainless steel may fail. • Aerospace and Defense Ideal for weight-sensitive applications requiring structural integrity and resistance to atmospheric conditions. • Oil and Gas Reliable in offshore platforms and downhole equipment exposed to saltwater and high pressures. • Medical Equipment Manufacturing Biocompatible properties allow safe usage in hygienic and sterile processing systems. Key Features: • Precision manufactured to DIN 2633 specifications • PN 16 pressure rating for medium to high-pressure performance • Weld neck flange design ensures enhanced mechanical stability • Available in corrosion-resistant titanium grades 2 and 5 • Lightweight construction reduces overall system load • High resistance to acids, chlorides, and extreme environments • Custom dimensions, pressure classes, and finishes available on request Conclusion: DIN 2633 Titanium Flanges PN 16 from Ladhani Metal Corporation provide a high-performance solution for systems that require excellent corrosion resistance, mechanical strength, and reduced weight. With superior manufacturing precision and quality assurance, these flanges are suited for challenging environments in marine, aerospace, chemical, and medical sectors. For custom specifications, detailed technical assistance, or pricing inquiries, contact Ladhani Metal Corporation today.

product image
Titanium Flanges

Ladhani Metal Corporation is a leading manufacturer and exporter of DIN 2565 titanium flanges, engineered to provide lightweight, high-strength, and corrosion-resistant connections in low-pressure piping systems. These flanges are designed according to DIN 2565 standards and are typically available in PN 6 pressure ratings, ideal for threaded connections where welding is not required. Titanium flanges are known for their exceptional performance in highly corrosive and extreme temperature environments, making them an ideal choice for industries such as chemical processing, marine, aerospace, power generation, and medical equipment. Flange Types: • Threaded (Screwed) Flanges: Enable easy installation without welding, suitable for maintenance-heavy applications. • Raised Face (RF) Flanges: Improve gasket compression to ensure leak-tight connections. • Flat Face (FF) Flanges: Commonly used with non-metallic gaskets in low-pressure systems. • Forged Threaded Flanges: Offer superior mechanical properties due to the forging process. • Custom-Machined Flanges: Designed to meet unique dimensional or pressure specifications. Available Titanium Grades and Chemical Composition: 1. Grade 2 (Commercially Pure Titanium) o Titanium (Ti): ≥ 98.9% o Iron (Fe): ≤ 0.30% o Oxygen (O): ≤ 0.25% o Carbon (C): ≤ 0.08% o Nitrogen (N): ≤ 0.03% o Hydrogen (H): ≤ 0.015% o Applications: Ideal for marine environments, desalination plants, chemical tanks, and general corrosion-resistant piping. 2. Grade 5 (Ti-6Al-4V) o Titanium (Ti): Balance o Aluminum (Al): 5.5 – 6.75% o Vanadium (V): 3.5 – 4.5% o Iron (Fe): ≤ 0.40% o Oxygen (O): ≤ 0.20% o Applications: Preferred in aerospace, high-performance automotive, and industrial applications requiring high strength-to-weight ratio and temperature resistance. Applications of DIN 2565 Titanium Flanges: • Chemical Processing: Highly resistant to corrosive acids and chlorides, making them suitable for aggressive chemical media. • Marine Industry: Excellent resistance to seawater corrosion, suitable for piping on ships and offshore structures. • Power Generation: Used in heat exchangers, condensers, and cooling systems exposed to brine or aggressive fluids. • Aerospace & Defense: Applied in lightweight, high-performance systems that demand structural reliability. • Medical Equipment: Biocompatible and corrosion-resistant, used in sterile piping and surgical systems. Key Features: • Compliant with DIN 2565 standard and available in PN 6 pressure rating. • Lightweight with excellent corrosion resistance and mechanical strength. • Non-magnetic, biocompatible, and suitable for extreme temperatures. • Available in Grade 2 and Grade 5 titanium for diverse industrial needs. • Supplied with full traceability, test certificates, and quality documentation. Conclusion: DIN 2565 titanium flanges from Ladhani Metal Corporation offer a superior solution for environments requiring strength, reliability, and outstanding corrosion resistance. Whether for chemical plants, marine systems, or aerospace applications, these flanges deliver long-term performance and operational efficiency. With precise machining and strict quality control, our titanium flanges meet global industry standards. For detailed technical data, pricing, or bulk order inquiries, contact Ladhani Metal Corporation today.

product image
Titanium Flanges

Ladhani Metal Corporation is a trusted manufacturer and exporter of DIN 2561 titanium flanges, meticulously engineered for performance in low-pressure piping systems. The DIN 2561 standard outlines specifications for weld neck flanges with a nominal pressure rating of PN6, but we also offer extended options including PN10, PN16, PN25, and PN40 based on customer requirements. Our titanium flanges are crafted using premium-grade titanium alloys, ensuring exceptional corrosion resistance, lightweight strength, and reliability in critical environments such as chemical processing, marine systems, aerospace, and offshore operations. Flange types: • Weld neck flanges: Designed for high-integrity and stress-intensive piping systems • Raised face (RF): Enhances gasket performance and leak-proof sealing • Flat face (FF): Suitable where mating with brittle or non-metallic flange surfaces Grades, chemical composition, and applications: Titanium Grade 2 (UNS R50400) – Commercially Pure Titanium Chemical composition: Titanium (Ti): ≥ 98.90% Iron (Fe): ≤ 0.30% Oxygen (O): ≤ 0.25% Carbon (C): ≤ 0.08% Nitrogen (N): ≤ 0.03% Hydrogen (H): ≤ 0.015% Applications: Ideal for chemical processing, desalination, marine applications, and medical equipment. Excellent resistance to seawater, chlorides, and oxidizing environments. Lightweight and biocompatible, widely used in offshore platforms, heat exchangers, and aerospace structures. Titanium Grade 5 (Ti-6Al-4V, UNS R56400) – Titanium Alloy Chemical composition: Titanium (Ti): Balance Aluminum (Al): 5.5 – 6.75% Vanadium (V): 3.5 – 4.5% Iron (Fe): ≤ 0.40% Oxygen (O): ≤ 0.20% Carbon (C): ≤ 0.08% Nitrogen (N): ≤ 0.05% Hydrogen (H): ≤ 0.015% Applications: Common in high-performance and structural applications including aerospace, automotive, and deep-sea systems. High strength-to-weight ratio, excellent corrosion resistance, and thermal stability make it ideal for demanding engineering environments. Applications of DIN 2561 Titanium Flanges: Marine & Offshore Industries: titanium flanges ideal for offshore drilling rigs, subsea equipment, and desalination plants, ensuring reliable performance in marine environments. Chemical Processing: The superior corrosion resistance of titanium in aggressive chemicals makes it an excellent choice for reactors, pressure vessels, and pipelines used in chemical processing plants. Aerospace & Aviation: Titanium is used in aerospace applications due to its lightweight, high strength, and ability to withstand extreme temperatures. . Power Generation: In nuclear and thermal power plants, where materials must withstand high temperatures and corrosive conditions. Key features: • Manufactured as per DIN 2561 standard • High dimensional accuracy and surface finish • Custom sizes, face types, and drilling options available Conclusion: DIN 2561 titanium flanges from Ladhani Metal Corporation offer reliable, long-lasting performance in aggressive and weight-sensitive environments. With availability in grades like Titanium Grade 2 and Grade 5, these flanges meet international standards and suit a wide range of industrial applications. Our commitment to quality, precision, and customer satisfaction makes our titanium flanges a preferred choice across global industries. For technical details, pricing, or bulk inquiries, contact Ladhani Metal Corporation.

product image
titanium flanges

Ladhani Metal Corporation is a trusted supplier of high-quality DIN 2545 titanium flanges, designed for use in industries where strength, durability, and resistance to corrosion are essential. These titanium flanges are crafted to meet the highest standards of performance, offering reliability in a wide range of demanding applications such as chemical processing, marine environments, and aerospace industries. With a pressure rating of PN 40, these flanges are capable of withstanding pressures up to 40 bar, ensuring optimal performance even under high-pressure conditions. Types of DIN 2545 Titanium Flanges: Flat Face Flanges (FF) – These flanges have a flat surface that allows for even distribution of the sealing force, making them ideal for low-pressure applications where a tight seal is necessary. Raised Face Flanges (RF) – Featuring a raised area around the bolt holes, these flanges provide a higher sealing pressure, ensuring a more secure seal in higher-pressure environments. Ring-Type Joint (RTJ) Flanges – These flanges are equipped with a ring groove for use with a metal sealing ring, ideal for applications with high pressures or extreme temperatures. Grades of Titanium and Their Chemical Composition: Grade 2 (Commercially Pure Titanium) Chemical Composition: Ti: 99.2%, Fe: 0.3%, O: 0.18%, N: 0.03%, C: 0.08% Grade 2 titanium is the most commonly used form of titanium due to its excellent corrosion resistance, particularly in marine, chemical processing, and general industrial applications. It offers great strength-to-weight ratio and is known for its ability to withstand corrosive environments, including saltwater and various acidic conditions. Grade 5 (Titanium Alloy, Ti-6Al-4V) Chemical Composition: Ti: 90%, Al: 6%, V: 4%, Fe: 0.25%, O: 0.2%, C: 0.08% Grade 5 titanium, known as Ti-6Al-4V, is an alloy that combines high strength with excellent corrosion resistance. It is commonly used in aerospace, automotive, and high-performance engineering applications, offering a superior balance of strength, fatigue resistance, and durability. This grade is ideal for applications where structural integrity is critical. PN 40 Pressure Rating: The "PN" in DIN 2545 refers to the pressure rating, with PN 40 indicating that the flange is designed to withstand a maximum pressure of 40 bar. This pressure rating ensures that the flange is suitable for high-pressure systems, offering the necessary strength and reliability to maintain secure and leak-free connections. Applications: Chemical and petrochemical industries Marine and offshore platforms Aerospace and aviation systems Power generation and nuclear industries Food processing and pharmaceutical industries Ladhani Metal Corporation guarantees the production of these titanium flanges with precision and quality control, ensuring compliance with international standards. Each flange is manufactured to the exact specifications and undergoes rigorous testing to meet the required performance standards. Whether for a high-pressure industrial system or a specialized application, Ladhani Metal Corporation's DIN 2545 titanium flanges provide the performance and reliability needed for long-term operation.

product image
blind flanges

DIN 2527 SS P.H. (Precipitation Hardening) Blind Flanges are designed for use in high-performance piping systems that require robust sealing solutions. Made from precipitation-hardening stainless steel alloys, these flanges combine high strength, excellent corrosion resistance, and the ability to withstand elevated temperatures. Manufactured to meet the DIN 2527 standard, these flanges ensure dimensional accuracy, high pressure tolerance, and superior mechanical performance, making them ideal for demanding applications in industries such as chemical processing, aerospace, and power generation. Material Composition of Precipitation Hardening Stainless Steel (SS P.H.): Precipitation-hardening stainless steels are a family of alloys known for their ability to achieve high strength through heat treatment. Grade 17-4 PH: Chromium (Cr): 15.0% - 17.5% Nickel (Ni): 3.0% - 5.0% Copper (Cu): 3.0% - 5.0% Iron (Fe): Balance Manganese (Mn): 1.0% max Silicon (Si): 1.0% max Carbon (C): ≤ 0.07% Phosphorus (P): ≤ 0.04% Sulfur (S): ≤ 0.03% Grade 15-5 PH: Chromium (Cr): 14.0% - 15.5% Nickel (Ni): 3.5% - 5.5% Copper (Cu): 2.5% - 4.5% Iron (Fe): Balance Manganese (Mn): 1.0% max Silicon (Si): 1.0% max Carbon (C): ≤ 0.07% Phosphorus (P): ≤ 0.04% Sulfur (S): ≤ 0.03% Key Features of DIN 2527 SS P.H. Blind Flanges: High Strength: Precipitation-hardened stainless steels, such as 17-4 PH and 15-5 PH, are known for their high tensile strength and hardness. Corrosion Resistance: Stainless steel, especially in the precipitation-hardened grades, offers excellent resistance to corrosion, including resistance to pitting, crevice corrosion, and stress corrosion cracking in both aqueous and high-temperature environments High-Temperature Performance: SS P.H. Blind Flanges can withstand high temperatures, making them suitable for use in applications that involve elevated temperatures (up to 600°C or 1100°F), such as chemical reactors, power plants, and aerospace systems. Dimensional Accuracy & Pressure Ratings: These flanges are manufactured to precise DIN 2527 standards to ensure tight seals and correct fitment in piping systems. They are available in multiple pressure classes such as PN6, PN10, and PN16, which denote the maximum pressure the flange can safely withstand. Design Options: Standard Blind Flange (Type A): A solid, circular flange used to seal the end of a pipe or vessel, suitable for general applications. Flat-Faced Blind Flange: Features a flat sealing surface for low-pressure applications, ideal for ensuring a tight seal in systems with low pressure. Raised Face Blind Flange: Has a raised area around the center, providing enhanced sealing for higher-pressure applications. Ring-Type Joint (RTJ) Blind Flange: Designed with a groove for a ring-type joint gasket, used in high-pressure systems such as oil and gas pipelines. Long Weld Neck Blind Flange: Equipped with an extended neck for welding, offering additional strength and support in high-pressure or stressed systems. Nominal Diameter: DIN 2527 SS P.H. Blind Flanges are available in various nominal diameters (DN), ranging from DN10 (1/2 inch) up to DN600 (24 inches) or larger, ensuring compatibility with a wide range of piping systems and applications.

product image
Titanium Coupling & Nipple

Titanium couplings and nipples are essential components used in piping systems to connect, extend, or adapt pipes. Renowned for their outstanding strength, corrosion resistance, and durability, titanium fittings are widely utilized in high-performance industries such as aerospace, marine, chemical processing, and power generation. The unique properties of titanium ensure that these fittings offer long-lasting, reliable service in demanding applications. Titanium Coupling A titanium coupling is a pipe fitting used to join two pipes or tubes together. They are designed to connect the same or different diameter pipes, allowing for a seamless, leak-proof connection. Titanium couplings offer exceptional resistance to corrosion, high strength, and are lightweight, making them ideal for use in environments exposed to harsh conditions like seawater, chemical exposure, or high temperatures. Titanium Nipple A titanium nipple is a short, cylindrical pipe section that is typically threaded on both ends to allow for easy connection of pipes. It serves as an extension or connection between two other fittings or pipes, offering a secure and stable joint. Like other titanium components, titanium nipples offer the advantage of corrosion resistance, strength, and durability, making them suitable for challenging applications across various industries. Titanium Couplings and Nipples – Mechanical Specifications Material: Grade: Typically Grade 2 (commercially pure titanium) or Grade 5 (Ti-6Al-4V, titanium alloy) depending on the application requirements. Standard: ASTM B337, ASTM B348, or equivalent. Tensile Strength: Grade 2 (Pure Titanium): 35,000 – 50,000 psi (240 – 345 MPa). Grade 5 (Ti-6Al-4V): 130,000 psi (900 MPa). Yield Strength: Grade 2 (Pure Titanium): 20,000 – 40,000 psi (138 – 276 MPa). Grade 5 (Ti-6Al-4V): 120,000 psi (828 MPa). Elongation: Grade 2 (Pure Titanium): 20-25%. Grade 5 (Ti-6Al-4V): 10-15%. Hardness: Grade 2 (Pure Titanium): 170-230 HV (Vickers hardness). Grade 5 (Ti-6Al-4V): 300-400 HV (Vickers hardness). Types of Titanium Couplings: Threaded Couplings: Used to connect pipes with matching threads, providing a secure and easy-to-assemble connection. Common for low-pressure systems. Socket Weld Couplings: Welded into the socket of connecting pipes, ideal for high-pressure applications, offering a permanent, strong connection. Butt Weld Couplings: Have flared ends for welding to pipes, commonly used in high-pressure systems for a smooth and durable connection. Flanged Couplings: Connect pipes via flanges and bolts with a gasket for a high-pressure, leak-proof connection. Suitable for large-scale industrial applications. Types of Titanium Nipples: Threaded Nipples: Cylindrical pipes with male threads at both ends, used to extend or connect pipes. Easy to install and remove. Socket Weld Nipples: One end fits into a socket for welding, designed for high-pressure systems, offering a permanent and robust connection. Butt Weld Nipples: Used to connect pipes by welding, offering a seamless and high-strength connection for high-pressure systems. Reducing Nipples: Connect pipes of different diameters, allowing for transitions between pipe sizes in fluid systems. Extension Nipples: Extend the length of a pipeline, used in systems requiring adjusted pipe alignment or spacing. Hex Nipples: Have a hexagonal shape for easy tightening and installation without tools, commonly used in fluid and gas systems.

Still searching for
automotive aerospace marine?